Evaluation of simple bifurcation points and post-critical path in large finite rotation problems

[1]  H. N. Hill,et al.  Lateral Buckling of Beams , 1960 .

[2]  W. T. Koiter THE STABILITY OF ELASTIC EQUILIBRIUM , 1970 .

[3]  David A. Peters,et al.  On the lateral buckling of uniform slender cantilever beams , 1975 .

[4]  H. B. Keller Global Homotopies and Newton Methods , 1978 .

[5]  D. W. Scharpf,et al.  Finite element method — the natural approach , 1979 .

[6]  G. Moore,et al.  The Calculation of Turning Points of Nonlinear Equations , 1980 .

[7]  Werner C. Rheinboldt,et al.  Solution Fields of Nonlinear Equations and Continuation Methods , 1980 .

[8]  H. Keller,et al.  Path following near bifurcation , 1981 .

[9]  W. Rheinboldt Computation of Critical Boundaries on Equilibrium Manifolds , 1982 .

[10]  Werner C. Rheinboldt,et al.  Algorithm 596: a program for a locally parameterized , 1983, TOMS.

[11]  H. Keller The Bordering Algorithm and Path Following Near Singular Points of Higher Nullity , 1983 .

[12]  E. Riks Some computational aspects of the stability analysis of nonlinear structures , 1984 .

[13]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[14]  C. Felippa Traversing Critical Points with Penalty Springs , 1987 .

[15]  J. P. Fink,et al.  A geometric framework for the numerical study of singular points , 1987 .

[16]  J. Middleton,et al.  Transient/dynamic analysis and constitutive laws for engineering materials , 1987 .

[17]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[18]  Calculation of the stable equilibrium paths of discrete conservative systems with singular points , 1989 .

[19]  Peter Wriggers,et al.  A general procedure for the direct computation of turning and bifurcation points , 1990 .

[20]  J. G. Jalón,et al.  Dynamics of flexible multibody systems using cartesian co‐ordinates and large displacement theory , 1991 .

[21]  Alberto Cardona,et al.  Rigid and flexible joint modelling in multibody dynamics using finite elements , 1991 .

[22]  A. Eriksson Derivatives of tangential stiffness matrices for equilibrium path descriptions , 1991 .

[23]  Atef F. Saleeb,et al.  Effective modelling of spatial buckling of beam assemblages, accounting for warping constraints and rotation-dependency of moments , 1992 .

[24]  Anders Eriksson,et al.  On improved predictions for structural equilibrium path evaluations , 1993 .

[25]  Carlos A. Felippa,et al.  A three‐dimensional non‐linear Timoshenko beam based on the core‐congruential formulation , 1993 .

[26]  Im Seyoung,et al.  Finite element analysis of lateral buckling for beam structures , 1994 .

[27]  Anders Eriksson,et al.  Fold lines for sensitivity analyses in structural instability , 1994 .

[28]  Adnan Ibrahimbegovic,et al.  Interpolation non linéaire pour un élément fini de poutre en grandes rotations tri-dimensionnelles , 1995 .

[29]  Eugenio Oñate,et al.  A critical displacement approach for predicting structural instability , 1996 .

[30]  A. Cardona,et al.  Continuation methods for tracing the equilibrium path in flexible mechanism analysis , 1998 .