On classicalization in nonlinear sigma models

Abstract We consider the phenomenon of classicalization in nonlinear sigma models with both positive and negative target space curvature and with any number of derivatives. We find that the theories with only two derivatives exhibit a weak form of classicalization, and that the quantitative results depend on the sign of the curvature. Nonlinear sigma models with higher derivatives show a strong form of the phenomenon which is independent of the sign of curvature. We argue that weak classicalization may actually be equivalent to asymptotic safety, whereas strong classicalization seems to be a genuinely different phenomenon. We also discuss possible ambiguities in the definition of the classical limit.

[1]  G. Dvali,et al.  Dynamics of Unitarization by Classicalization , 2010, 1011.0114.

[2]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[3]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[4]  M. Fabbrichesi,et al.  Electroweak S and T parameters from a fixed point condition. , 2011, Physical review letters.

[5]  R. Percacci,et al.  Fixed points of nonlinear sigma models in d > 2 , 2008, 0810.0715.

[6]  Sarah Folkerts,et al.  Physics of trans-Planckian gravity , 2010, 1006.0984.

[7]  S. Brodsky,et al.  The $\hbar$ Expansion in Quantum Field Theory , 2010, 1009.2313.

[8]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[9]  R. Percacci The Higgs phenomenon in quantum gravity , 1991, 0712.3545.

[10]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[11]  Absence of higher derivatives in the renormalization of propagators in quantum field theories with infinitely many couplings , 2002, hep-th/0212013.

[12]  M. Fabbrichesi,et al.  Asymptotic safety and the gaugedSU(N)nonlinearσmodel , 2010, 1010.0912.

[13]  On the ultraviolet behaviour of Newton's constant , 2004, hep-th/0401071.

[14]  M. Fabbrichesi,et al.  Fermions and Goldstone bosons in an asymptotically safe model , 2011, 1105.1968.

[15]  O. Zanusso,et al.  One loop beta functions and fixed points in higher derivative sigma models , 2009, 0910.0851.

[16]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[17]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[18]  A. Kehagias,et al.  Classicalization of gravitons and Goldstones , 2011, 1103.5963.

[19]  G. P. Vacca,et al.  Asymptotic safety, emergence and minimal length , 2010, 1008.3621.