Targeted Delivery of Immunomodulators to Lymph Nodes

[1]  Mauro Ferrari,et al.  Principles of nanoparticle design for overcoming biological barriers to drug delivery , 2015, Nature Biotechnology.

[2]  T. Kupper,et al.  The emerging role of resident memory T cells in protective immunity and inflammatory disease , 2015, Nature Medicine.

[3]  J. Azzi,et al.  Serine Protease Inhibitor‐6 Differentially Affects the Survival of Effector and Memory Alloreactive CD8‐T Cells , 2015, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[4]  Xiaoyan Zhang,et al.  Recent advances in lymphatic targeted drug delivery system for tumor metastasis , 2014, Cancer biology & medicine.

[5]  P. Choyke,et al.  Cancer Drug Delivery: Considerations in the Rational Design of Nanosized Bioconjugates , 2014, Bioconjugate chemistry.

[6]  Samir Mitragotri,et al.  Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies , 2014, Nature Reviews Drug Discovery.

[7]  Steven T. Wang,et al.  Central memory CD8+ T lymphocytes mediate lung allograft acceptance. , 2014, The Journal of clinical investigation.

[8]  S. Miller,et al.  A Biodegradable Nanoparticle Platform for the Induction of Antigen-Specific Immune Tolerance for Treatment of Autoimmune Disease , 2014, ACS nano.

[9]  S. Stacker,et al.  Lymphangiogenesis and lymphatic vessel remodelling in cancer , 2014, Nature Reviews Cancer.

[10]  Gregory L. Szeto,et al.  Structure-based programming of lymph-node targeting in molecular vaccines , 2014, Nature.

[11]  Hea‐Young Cho,et al.  Nano-sized drug delivery systems for lymphatic delivery. , 2014, Journal of nanoscience and nanotechnology.

[12]  J. Azzi,et al.  Calcineurin Inhibitors: 40 Years Later, Can’t Live Without … , 2013, The Journal of Immunology.

[13]  C. Ricordi,et al.  Long-Term Heart Transplant Survival by Targeting the Ionotropic Purinergic Receptor P2X7 , 2013, Circulation.

[14]  Francisco J. Quintana,et al.  Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis , 2012, Proceedings of the National Academy of Sciences.

[15]  J. Hubbell,et al.  Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. , 2011, Journal of Controlled Release.

[16]  M. Uesaka,et al.  Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. , 2011, Nature nanotechnology.

[17]  D. Irvine,et al.  In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles , 2011, Proceedings of the National Academy of Sciences.

[18]  N. Zhang,et al.  Targeting Lymphangiogenesis After Islet Transplantation Prolongs Islet Allograft Survival , 2011, Transplantation.

[19]  Li Tang,et al.  Polylactide‐cyclosporin A nanoparticles for targeted immunosuppression , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[20]  Baohui Xu,et al.  Alpha4beta7 integrin/MAdCAM-1 adhesion pathway is crucial for B cell migration into pancreatic lymph nodes in nonobese diabetic mice. , 2010, Journal of autoimmunity.

[21]  T. Fan,et al.  The Formulation of Aptamer-coated Paclitaxel–polylactide Nanoconjugates and Their Targeting to Cancer Cells , 2022 .

[22]  J. Bluestone,et al.  Prevention of Diabetes by FTY720-Mediated Stabilization of Peri-Islet Tertiary Lymphoid Organs , 2010, Diabetes.

[23]  W. Seo,et al.  PSGL‐1 function in immunity and steady state homeostasis , 2009, Immunological reviews.

[24]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[25]  C. Gleissner,et al.  Glycosylation in immune cell trafficking , 2009, Immunological reviews.

[26]  R. Oberbauer,et al.  Calcineurin inhibitor minimization, withdrawal and avoidance protocols after kidney transplantation , 2009, Transplant international : official journal of the European Society for Organ Transplantation.

[27]  Jianjun Cheng,et al.  Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles. , 2008, Angewandte Chemie.

[28]  G. Klintmalm,et al.  Calcineurin inhibitor‐sparing regimens in solid organ transplantation: focus on improving renal function and nephrotoxicity , 2007, Clinical transplantation.

[29]  Sai T Reddy,et al.  Exploiting lymphatic transport and complement activation in nanoparticle vaccines , 2007, Nature Biotechnology.

[30]  Volker Wagner,et al.  The emerging nanomedicine landscape , 2006, Nature Biotechnology.

[31]  J. Chapman,et al.  Nephrotoxicity of ciclosporin A: short-term gain, long-term pain? , 2006, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[32]  N. Tolkoff-Rubin,et al.  2005 Immunosuppressive Strategies in Kidney Transplantation: Which Role for the Calcineurin Inhibitors? , 2005, Transplantation.

[33]  S. Lira,et al.  Lymph Node Occupancy Is Required for the Peripheral Development of Alloantigen-Specific Foxp3+ Regulatory T Cells1 , 2005, The Journal of Immunology.

[34]  Fadi G Lakkis,et al.  Lymphoid Neogenesis in Murine Cardiac Allografts Undergoing Chronic Rejection , 2005, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[35]  Philip F Halloran,et al.  Immunosuppressive drugs for kidney transplantation. , 2004, The New England journal of medicine.

[36]  U. V. von Andrian,et al.  Lymphocyte–HEV Interactions in Lymph Nodes of a Sulfotransferase-deficient Mouse , 2003, The Journal of experimental medicine.

[37]  Ulrich H. von Andrian,et al.  Homing and cellular traffic in lymph nodes , 2003, Nature Reviews Immunology.

[38]  E. Butcher,et al.  Chemokines in the systemic organization of immunity , 2003, Immunological reviews.

[39]  M. Sayegh,et al.  Memory T cells: a hurdle to immunologic tolerance. , 2003, Journal of the American Society of Nephrology : JASN.

[40]  Baohui Xu,et al.  Lymphocyte Homing to Bronchus-associated Lymphoid Tissue (BALT) Is Mediated by L-selectin/PNAd, α4β1 Integrin/VCAM-1, and LFA-1 Adhesion Pathways , 2003, The Journal of experimental medicine.

[41]  S. Akira,et al.  Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. , 2003, The Journal of clinical investigation.

[42]  M. Sayegh,et al.  The Role of the CD134-CD134 Ligand Costimulatory Pathway in Alloimmune Responses In Vivo 1 , 2003, The Journal of Immunology.

[43]  M. Sayegh,et al.  Responses In Vivo Costimulatory Pathway in Alloimmune The Role of the CD 134-CD 134 Ligand Yagita and , 2003 .

[44]  G. Storm,et al.  Liposomes to target the lymphatics by subcutaneous administration. , 2001, Advanced drug delivery reviews.

[45]  S. Michie,et al.  Lymphocyte migration to inflamed lacrimal glands is mediated by vascular cell adhesion molecule-1/alpha(4)beta(1) integrin, peripheral node addressin/l-selectin, and lymphocyte function-associated antigen-1 adhesion pathways. , 2001, The American journal of pathology.

[46]  David R. Moore,et al.  Polymerization of lactide with zinc and magnesium beta-diiminate complexes: stereocontrol and mechanism. , 2001, Journal of the American Chemical Society.

[47]  W. Somers,et al.  Insights into the Molecular Basis of Leukocyte Tethering and Rolling Revealed by Structures of P- and E-Selectin Bound to SLeX and PSGL-1 , 2000, Cell.

[48]  C. Mackay,et al.  T-cell function and migration. Two sides of the same coin. , 2000, The New England journal of medicine.

[49]  Fadi G Lakkis,et al.  Immunologic ‘ignorance’ of vascularized organ transplants in the absence of secondary lymphoid tissue , 2000, Nature Medicine.

[50]  K. Wood,et al.  T-cell activation, proliferation, and memory after cardiac transplantation in vivo. , 1999, Annals of surgery.

[51]  M. D. de Broe,et al.  A meta-analysis and morphological review of cyclosporine-induced nephrotoxicity in auto-immune diseases. , 1998, Kidney international.

[52]  O. Simell,et al.  Recirculation and homing of lymphocyte subsets: dual homing specificity of beta 7-integrin(high)-lymphocytes in nonobese diabetic mice. , 1996, Blood.

[53]  L. Picker,et al.  Lymphocyte Homing and Homeostasis , 1996, Science.

[54]  E. A. O'neill,et al.  T cell responses in calcineurin A alpha-deficient mice , 1996, The Journal of experimental medicine.

[55]  L. Picker,et al.  The human peripheral lymph node vascular addressin. An inducible endothelial antigen involved in lymphocyte homing. , 1993, The American journal of pathology.

[56]  E. Berg,et al.  Comparison of L-selectin and E-selectin ligand specificities: the L-selectin can bind the E-selectin ligands sialyl Le(x) and sialyl Le(a). , 1992, Biochemical and biophysical research communications.

[57]  E. Berg,et al.  The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor , 1991, The Journal of cell biology.

[58]  E. Butcher,et al.  Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes , 1988, The Journal of cell biology.

[59]  G. Kolata Drug transforms transplant medicine. , 1983, Science.

[60]  A. Corry 1973 meeting in kansas city. , 1973, Bulletin of the Medical Library Association.