Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model

Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author’s knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

[1]  Ronald T. Smith,et al.  Application-specific integrated filters for color-sequential microdisplay-based projection applications , 2001 .

[2]  Lalgudi V. Natarajan,et al.  Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations , 2002 .

[3]  Ronald T. Smith,et al.  DigiLens color sequential filtering for microdisplay-based projection applications , 2000, SPIE Optics + Photonics.

[4]  G. P. Crawford,et al.  Improved reflective displays based on polymer-dispersed liquid crystals , 2000 .

[5]  Vincent P. Tondiglia,et al.  Electrically switchable volume gratings in polymer‐dispersed liquid crystals , 1994 .

[6]  Germano Montemezzani,et al.  Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries , 1997 .

[7]  Gary Qian,et al.  Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications , 2001, SPIE OPTO.

[8]  John Clark,et al.  Application-specific integrated lenses (ASILs) for the next generation of wearable displays , 2000, Defense, Security, and Sensing.

[9]  R. Sutherland,et al.  Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film. , 1995, Optics letters.

[10]  Munekazu Date,et al.  Fabrication of Holographic Polymer Dispersed Liquid Crystal (HPDLC) with High Reflection Efficiency , 1999 .

[11]  Vincent P. Tondiglia,et al.  DEUTERIUM NMR AND MORPHOLOGY STUDY OF POLYMER-DISPERSED LIQUID-CRYSTAL BRAGG GRATINGS , 1996 .

[12]  Hari Singh Nalwa,et al.  Handbook of advanced electronic and photonic materials and devices , 2001 .

[13]  E. Lavernia,et al.  An experimental investigation , 1992, Metallurgical and Materials Transactions A.

[14]  Lalgudi V. Natarajan,et al.  Switchable holographic polymer-dispersed liquid crystals , 2001 .

[15]  Lalgudi V. Natarajan,et al.  Holographic Formation of Electro‐Optical Polymer–Liquid Crystal Photonic Crystals , 2002 .

[16]  J J Butler,et al.  Diffraction properties of highly birefringent liquid-crystal composite gratings. , 2000, Optics letters.

[17]  Vincent P. Tondiglia,et al.  Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals , 2001 .

[18]  Miguel A. Rodriguez,et al.  Diffractive properties of highly birefringent volume gratings: investigation , 2002 .

[19]  Vincent P. Tondiglia,et al.  Morphology of reflection holograms formed in situ using polymer-dispersed liquid crystals , 1996 .

[20]  Gregory P. Crawford,et al.  Characterization of holographic polymer dispersed liquid crystal transmission gratings , 2001 .

[21]  J. William Doane,et al.  Response times and voltages for PDLC light shutters , 1989 .

[22]  Doane,et al.  Deuterium NMR of polymer dispersed liquid crystals. , 1988, Physical review. A, General physics.

[23]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[24]  Allan C. Ashmead,et al.  Switchable Bragg grating devices for telecommunications applications , 2001, SPIE OPTO.

[25]  Lalgudi V. Natarajan,et al.  Development of photopolymer/liquid crystal composite materials for dynamic hologram applications , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[26]  Suresh Chandra,et al.  Switchable holograms for displays and telecommunications , 2001, SPIE Optics + Photonics.

[27]  Lalgudi V. Natarajan,et al.  Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes , 1993 .

[28]  Stephen F. Sagan,et al.  Electrically switchable Bragg grating technology for projection displays , 2001, IS&T/SPIE Electronic Imaging.

[29]  Vincent P. Tondiglia,et al.  The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals , 1995 .