Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein

microRNAs (miRNAs) are single-stranded, 21- to 23-nucleotide cellular RNAs that control the expression of cognate target genes. Primary miRNA (pri-miRNA) transcripts are transformed to mature miRNA by the successive actions of two RNase III endonucleases. Drosha converts pri-miRNA transcripts to precursor miRNA (pre-miRNA); Dicer, in turn, converts pre-miRNA to mature miRNA. Here, we show that normal processing of Drosophila pre-miRNAs by Dicer-1 requires the double-stranded RNA-binding domain (dsRBD) protein Loquacious (Loqs), a homolog of human TRBP, a protein first identified as binding the HIV trans-activator RNA (TAR). Efficient miRNA-directed silencing of a reporter transgene, complete repression of white by a dsRNA trigger, and silencing of the endogenous Stellate locus by Suppressor of Stellate, all require Loqs. In loqs f00791 mutant ovaries, germ-line stem cells are not appropriately maintained. Loqs associates with Dcr-1, the Drosophila RNase III enzyme that processes pre-miRNA into mature miRNA. Thus, every known Drosophila RNase-III endonuclease is paired with a dsRBD protein that facilitates its function in small RNA biogenesis.

[1]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[2]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[3]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[4]  Madeline A. Crosby,et al.  FlyBase: genes and gene models , 2004, Nucleic Acids Res..

[5]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[6]  Kuan-Teh Jeang,et al.  HIV-1 encoded candidate micro-RNAs and their cellular targets , 2004, Retrovirology.

[7]  T. Tuschl,et al.  The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis , 2004, Current Biology.

[8]  D. Barford,et al.  Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity , 2004, The EMBO journal.

[9]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[10]  P. Zamore,et al.  A Protein Sensor for siRNA Asymmetry , 2004, Science.

[11]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[12]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[13]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[14]  Nick V Grishin,et al.  Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  John Bracht,et al.  Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. , 2004, RNA.

[16]  O. Voinnet,et al.  In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. , 2004, Genes & development.

[17]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[18]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[19]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[20]  Giacomo Cavalli,et al.  Dissection of a Natural RNA Silencing Process in the Drosophila melanogaster Germ Line , 2004, Molecular and Cellular Biology.

[21]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[22]  Akira Ishizuka,et al.  Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. , 2004, Genes & development.

[23]  Stephen H. Bryant,et al.  CD-Search: protein domain annotations on the fly , 2004, Nucleic Acids Res..

[24]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[25]  E. Sontheimer,et al.  Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways , 2004, Cell.

[26]  E. Sontheimer,et al.  A Dicer-2-Dependent 80S Complex Cleaves Targeted mRNAs during RNAi in Drosophila , 2004, Cell.

[27]  T. Du,et al.  RISC Assembly Defects in the Drosophila RNAi Mutant armitage , 2004, Cell.

[28]  Jing Wu,et al.  The Drosophila SDE3 Homolog armitage Is Required for oskar mRNA Silencing and Embryonic Axis Specification , 2004, Cell.

[29]  G. Hannon,et al.  RNase III enzymes and the initiation of gene silencing , 2004, Nature Structural &Molecular Biology.

[30]  Feng Chen,et al.  A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac , 2004, Nature Genetics.

[31]  H. Vaucheret,et al.  The Nuclear dsRNA Binding Protein HYL1 Is Required for MicroRNA Accumulation and Plant Development, but Not Posttranscriptional Transgene Silencing , 2004, Current Biology.

[32]  James A. Birchler,et al.  Heterochromatic Silencing and HP1 Localization in Drosophila Are Dependent on the RNAi Machinery , 2004, Science.

[33]  N. Fedoroff,et al.  The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[35]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[36]  Kazuo Shinozaki,et al.  Specific interactions between Dicer-like proteins and HYL1/DRB- family dsRNA-binding proteins in Arabidopsis thaliana , 2004, Plant Molecular Biology.

[37]  B. Cullen,et al.  Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. , 2004, Nucleic acids research.

[38]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[39]  S. Elledge,et al.  Dicer is essential for mouse development , 2003, Nature Genetics.

[40]  Xiaodong Wang,et al.  R2D2, a Bridge Between the Initiation and Effector Steps of the Drosophila RNAi Pathway , 2003, Science.

[41]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[42]  Guiliang Tang,et al.  In vitro analysis of RNA interference in Drosophila melanogaster. , 2003, Methods.

[43]  E. Wimmer,et al.  piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. , 2003, Genetics.

[44]  Henning Urlaub,et al.  Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi , 2002, Cell.

[45]  J. Messing,et al.  CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana , 2002, Current Biology.

[46]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[47]  Phillip D Zamore,et al.  Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. , 2002, Molecular cell.

[48]  Shinji Yamaguchi,et al.  RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. , 2002, Genes & development.

[49]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[50]  C. Mello,et al.  The dsRNA Binding Protein RDE-4 Interacts with RDE-1, DCR-1, and a DExH-Box Helicase to Direct RNAi in C. elegans , 2002, Cell.

[51]  P. Zamore,et al.  ATP Requirements and Small Interfering RNA Structure in the RNA Interference Pathway , 2001, Cell.

[52]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[53]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[54]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[55]  A. Aravin,et al.  Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline , 2001, Current Biology.

[56]  E. Wimmer,et al.  Highly sensitive, fluorescent transformation marker for Drosophila transgenesis , 2000, Development Genes and Evolution.

[57]  E. Wimmer,et al.  A versatile vector set for animal transgenesis , 2000, Development Genes and Evolution.

[58]  R. Carthew,et al.  Heritable gene silencing in Drosophila using double-stranded RNA , 2000, Nature Biotechnology.

[59]  P. Lasko The Drosophila melanogaster Genome: Translation Factors and RNA Binding Proteins , 2000 .

[60]  Haifan Lin,et al.  piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. , 2000, Development.

[61]  M. Klingler,et al.  Genetic techniques: A universal marker for transgenic insects , 1999, Nature.

[62]  R. Braun,et al.  A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells , 1999, Nature Genetics.

[63]  Haifan Lin,et al.  A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. , 1998, Genes & development.

[64]  D. St Johnston,et al.  Oocyte determination and the origin of polarity in Drosophila: the role of the spindle genes. , 1997, Development.

[65]  W. Deng,et al.  Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. , 1997, Developmental biology.

[66]  A. Spradling,et al.  A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. , 1997, Development.

[67]  A. Spradling,et al.  Fusome asymmetry and oocyte determination in Drosophila. , 1995, Developmental genetics.

[68]  A. Spradling,et al.  The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. , 1994, Development.

[69]  W. Theurkauf Immunofluorescence analysis of the cytoskeleton during oogenesis and early embryogenesis. , 1994, Methods in cell biology.

[70]  A. Riggs,et al.  Genomic Sequencing , 2010 .

[71]  E. Wieschaus,et al.  Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. , 1991, Genetics.

[72]  B. Weisblum,et al.  General method for direct cloning of DNA fragments generated by the polymerase chain reaction. , 1991, Nucleic acids research.

[73]  B. Berkhout,et al.  Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. , 1991, Science.

[74]  M. Singh,et al.  HIV‐1 tat protein stimulates transcription by binding to a U‐rich bulge in the stem of the TAR RNA structure. , 1990, The EMBO journal.

[75]  Phillip A. Sharp,et al.  HIV-1 Tat protein trans-activates transcription in vitro , 1990, Cell.

[76]  B. Berkhout,et al.  Tat trans-activates the human immunodeficiency virus through a nascent RNA target , 1989, Cell.

[77]  J. Lis,et al.  Determinants of heat shock-induced chromosome puffing , 1985, Cell.

[78]  G. Rubin,et al.  Genetic transformation of Drosophila with transposable element vectors. , 1982, Science.