Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus

[1]  R. Moody A category of modules for the full toroidal Lie algebra , 2009 .

[2]  S. E. Rao Partial classification of modules for Lie-algebra of diffeomorphisms of d-dimensional torus , 2003, math/0312024.

[3]  K. Zhao,et al.  Weight modules over exp-polynomial Lie algebras , 2003, math/0305293.

[4]  A. Gerasimov,et al.  Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model , 2002, math/0204206.

[5]  C. Dong,et al.  Vertex Lie algebras, vertex Poisson algebras and vertex algebras , 2001, math/0102127.

[6]  S. Berman,et al.  Irreducible Representations for Toroidal Lie Algebras , 1999 .

[7]  V. Mazorchuk,et al.  On the Determinant of Shapovalov Form for Generalized Verma Modules , 1999 .

[8]  V. Kac Corrections to the book ``Vertex algebras for beginners'', second edition, by Victor Kac , 1999, math/9901070.

[9]  V. Kac Vertex algebras for beginners , 1997 .

[10]  S. E. Rao Irreducible Representations of the Lie-Algebra of the Diffeomorphisms of ad-Dimensional Torus , 1996 .

[11]  V. Futorny Irreducible non-dense $A^{(1)}_1$-modules. , 1996 .

[12]  Haisheng Li Local systems of vertex operators, vertex superalgebras and modules , 1994, hep-th/9406185.

[13]  O. Mathieu Classification of Harish-Chandra modules over the Virasoro Lie algebra , 1992 .

[14]  J. Lepowsky,et al.  Construction of the affine Lie algebraA1(1) , 1978 .

[15]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .