Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus
暂无分享,去创建一个
[1] R. Moody. A category of modules for the full toroidal Lie algebra , 2009 .
[2] S. E. Rao. Partial classification of modules for Lie-algebra of diffeomorphisms of d-dimensional torus , 2003, math/0312024.
[3] K. Zhao,et al. Weight modules over exp-polynomial Lie algebras , 2003, math/0305293.
[4] A. Gerasimov,et al. Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model , 2002, math/0204206.
[5] C. Dong,et al. Vertex Lie algebras, vertex Poisson algebras and vertex algebras , 2001, math/0102127.
[6] S. Berman,et al. Irreducible Representations for Toroidal Lie Algebras , 1999 .
[7] V. Mazorchuk,et al. On the Determinant of Shapovalov Form for Generalized Verma Modules , 1999 .
[8] V. Kac. Corrections to the book ``Vertex algebras for beginners'', second edition, by Victor Kac , 1999, math/9901070.
[9] V. Kac. Vertex algebras for beginners , 1997 .
[10] S. E. Rao. Irreducible Representations of the Lie-Algebra of the Diffeomorphisms of ad-Dimensional Torus , 1996 .
[11] V. Futorny. Irreducible non-dense $A^{(1)}_1$-modules. , 1996 .
[12] Haisheng Li. Local systems of vertex operators, vertex superalgebras and modules , 1994, hep-th/9406185.
[13] O. Mathieu. Classification of Harish-Chandra modules over the Virasoro Lie algebra , 1992 .
[14] J. Lepowsky,et al. Construction of the affine Lie algebraA1(1) , 1978 .
[15] I. Stewart,et al. Infinite-dimensional Lie algebras , 1974 .