Revised exponentially fitted Runge-Kutta-Nyström methods

Abstract It is the purpose of this paper to revise the exponential fitting technique for the numerical solution of special second order ordinary differential equations (ODEs) y ″ = f ( x , y ) , with oscillatory or periodic solutions, by Runge–Kutta–Nystrom methods. Due to the multistage nature of these methods, the proposed technique takes into account the contribution to the error arising from the computation of the internal stages. The benefit on the accuracy of the overall numerical scheme is visible in the presented numerical evidence.

[1]  Philip W. Sharp,et al.  Two-stage and Three-stage Diagonally Implicit Runge-Kutta Nyström Methods of Orders Three and Four , 1990 .

[2]  Beatrice Paternoster,et al.  Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection , 2012, Appl. Math. Comput..

[3]  D. Hollevoet,et al.  The optimal exponentially-fitted Numerov method for solving two-point boundary value problems , 2009 .

[4]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .

[5]  Higinio Ramos,et al.  On the frequency choice in trigonometrically fitted methods , 2010, Appl. Math. Lett..

[6]  Beatrice Paternoster,et al.  Two Step Runge-Kutta-Nyström Methods for Oscillatory Problems Based on Mixed Polynomials , 2003, International Conference on Computational Science.

[7]  H. De Meyer,et al.  Frequency evaluation in exponential fitting multistep algorithms for ODEs , 2002 .

[8]  Theodore E. Simos,et al.  Exponentially-fitted Runge-Kutta-Nystro"m method for the numerical solution of initial-value problems with oscillating solutions , 2002, Appl. Math. Lett..

[9]  J. M. Franco Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .

[10]  Beatrice Paternoster,et al.  Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday , 2012, Comput. Phys. Commun..

[11]  Raffaele D'Ambrosio,et al.  Construction of the ef-based Runge-Kutta methods revisited , 2011, Comput. Phys. Commun..

[12]  Luca Dieci,et al.  A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side , 2012, J. Comput. Appl. Math..

[13]  Luciano Lopez,et al.  On the continuous extension of Adams-Bashforth methods and the event location in discontinuous ODEs , 2012, Appl. Math. Lett..

[14]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[15]  Beatrice Paternoster,et al.  General linear methods for y′′ = f (y (t)) , 2012, Numerical Algorithms.

[16]  B. Paternoster Two step Runge-Kutta-Nystrom methods based on algebraic polynomials , 2003 .

[17]  Beatrice Paternoster,et al.  Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations , 2011, Math. Comput. Simul..

[18]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[19]  Beatrice Paternoster,et al.  Two-step hybrid collocation methods for y"=f(x, y) , 2009, Appl. Math. Lett..

[20]  R. D'Ambrosio,et al.  Parameter estimation in exponentially fitted hybrid methods for second order differential problems , 2011, Journal of Mathematical Chemistry.

[21]  Luca Dieci,et al.  Numerical solution of discontinuous differential systems: Approaching the discontinuity surface from one side , 2013 .

[22]  Beatrice Paternoster,et al.  Two Step Runge-Kutta-Nyström Methods for y'' = f(x, y) and P-Stability , 2002, International Conference on Computational Science.

[23]  Hans Van de Vyver,et al.  On the generation of P-stable exponentially fitted Runge-Kutta-Nyström methods by exponentially fitted Runge-Kutta methods , 2006 .

[24]  Liviu Gr. Ixaru Runge-Kutta Methods with Equation Dependent Coefficients , 2012, NAA.

[25]  John P. Coleman,et al.  Mixed collocation methods for y ′′ =f x,y , 2000 .

[26]  J. M. Franco Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .

[27]  Raffaele D'Ambrosio,et al.  Exponentially fitted two-step hybrid methods for y″=f(x, y) , 2011, J. Comput. Appl. Math..

[28]  Liviu Gr. Ixaru Runge-Kutta method with equation dependent coefficients , 2012, Comput. Phys. Commun..

[29]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .