Mechanosensory Lateral Line

Publisher Summary The mechanosensory lateral line system allows fishes to respond to unidirectional or oscillatory water movement at relatively short distances. Effective lateral line stimuli may arise from prey or may be generated by water flow over environmental obstacles. The lateral line system transduces vibratory reproductive signals in salmon and facilitates rheotaxis. Additionally, efferent input and other inputs contribute to, or modify lateral-line-mediated behavior; and the mechanosensory lateral line system responds to noncompressible, local flow in the near field. There are distinct differences in the functional attributes of narrow and widened head canal systems. Increased canal width, the presence of a flexible instead of a stiff canal roof, and increased size of neuromasts (typical of widened canals) all contribute to increased neuromast sensitivity, but increased response time of widened canal systems. Additionally, the response properties of extremely wide canals are similar to that of superficial neuromasts. This could account for the evolution of both widened canals and reduced canals (where superficial neuromasts predominate) in deep sea taxa.

[1]  S. Bryant,et al.  Homeobox genes in axolotl lateral line placodes and neuromasts , 1997, Development Genes and Evolution.

[2]  D. Parichy When neural crest and placodes collide: interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae). , 1996, Developmental biology.

[3]  R. Northcutt,et al.  Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. , 1991, Brain, behavior and evolution.

[4]  D. Parichy Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): the role of the lateral line sensory system and the evolution of pattern-forming mechanisms. , 1996, Developmental biology.

[5]  J. Blaxter,et al.  STRUCTURE AND DEVELOPMENT OF THE LATERAL LINE , 1987 .

[6]  J. Gray,et al.  Structure and development of the free neuromasts and lateral line system of the herring , 1983, Journal of the Marine Biological Association of the United Kingdom.

[7]  Northcutt Rg,et al.  Evolution of Gnathostome Lateral Line Ontogenies , 1997 .

[8]  M. Fine,et al.  Primary connections of the anterior and posterior lateral line nerves in the oyster toadfish. , 1988, Brain, behavior and evolution.

[9]  A. S. Kapoor The Time and Order of Formation of Sensory Canals in the Fishes Ophicephalus punctatus (Ophicephalidae) and Wallago attu (Siluridae) , 1961 .

[10]  T. Finger,et al.  Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish , 1984, The Journal of comparative neurology.

[11]  A. Flock,et al.  THE ULTRASTRUCTURE OF THE KINOCILIUM OF THE SENSORY CELLS IN THE INNER EAR AND LATERAL LINE ORGANS , 1965, The Journal of cell biology.

[12]  D. Adriaens,et al.  The cranial lateral-line system in Clarias gariepinus (Burchell, 1822) (Siluroidei:Clariidae): morphology and development of canal related bones. , 1997, European journal of morphology.

[13]  J F Webb,et al.  Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. , 1989, Brain, behavior and evolution.

[14]  Jiakun Song,et al.  Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure , 1995, Hearing Research.

[15]  S Coombs,et al.  Form and function relationships in lateral line systems: comparative data from six species of Antarctic notothenioid fish. , 1994, Brain, behavior and evolution.

[16]  S Coombs,et al.  Function and evolution of superficial neuromasts in an Antarctic notothenioid fish. , 1994, Brain, behavior and evolution.

[17]  J. T. Corwin,et al.  Selective labeling of sensory hair cells and neurons in auditory, vestibular, and lateral line systems by a monoclonal antibody , 1990, The Journal of comparative neurology.

[18]  J. Webb,et al.  Morphology and development of the multiple lateral line canals on the trunk in two species of Hexagrammos (Scorpaeniformes, Hexagrammidae) , 1997, Journal of morphology.

[19]  R. Northcutt,et al.  The primary projections of the lateral-line nerves of the Florida gar, Lepisosteus platyrhincus. , 1991, Brain, behavior and evolution.

[20]  R. Northcutt,et al.  Development of branchiomeric and lateral line nerves in the axolotl , 1995, The Journal of comparative neurology.

[21]  Paula M. Mabee,et al.  Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae) , 1996, Journal of morphology.

[22]  G. A. Moore,et al.  The Lateralis Components of the Acoustico-Lateralis System in the Sunfish Family Centrarchidae , 1962 .

[23]  C. A. Mccormick Organization and connections of octaval and lateral line centers in the medulla of a clupeid, Dorosoma cepedianum , 1997, Hearing Research.

[24]  J. Blaxter,et al.  Development of superficial and lateral line neuromasts in larvae and juveniles of plaice (Pleuronectes platessa) and sole (Solea solea) , 1992, Journal of the Marine Biological Association of the United Kingdom.

[25]  S. Dijkgraaf THE FUNCTIONING and SIGNIFICANCE OF THE LATERAL‐LINE ORGANS , 1963, Biological reviews of the Cambridge Philosophical Society.

[26]  H. Bleckmann,et al.  Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. , 1990, Brain, behavior and evolution.

[27]  T. Tricas,et al.  Morphology of the mechanosensory lateral line system in the Atlantic Stingray, Dasyatissabina: The mechanotactile hypothesis , 1998, Journal of morphology.

[28]  S. Coombs,et al.  Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus , 1996, The Journal of comparative neurology.

[29]  J. New,et al.  Central topography of anterior lateral line nerve projections in the channel catfish, Ictalurus punctatus. , 1994, Brain, behavior and evolution.

[30]  L. Fuiman,et al.  The role of the sensory systems of herring larvae in evading predatory fishes , 1990, Journal of the Marine Biological Association of the United Kingdom.

[31]  Sietse M. van Netten Hair cell mechano-transduction: Its influence on the gross mechanical characteristics of a hair cell sense organ , 1997 .

[32]  N. Marshall Structure and general distribution of free neuromasts in the black goby, Gobius niger , 1986, Journal of the Marine Biological Association of the United Kingdom.

[33]  A J Hudspeth,et al.  Mechanoelectrical transduction by hair cells in the acousticolateralis sensory system. , 1983, Annual review of neuroscience.

[34]  N. J. Marshall,et al.  VISION AND SENSORY PHYSIOLOGY The lateral line systems of three deep‐sea fish , 1996 .

[35]  P. Perin,et al.  The vestibular hair cells:post-transductional signal processing , 1998, Progress in Neurobiology.

[36]  J. M. Tormey ARTIFACTUAL LOCALIZATION OF FERRITIN IN THE CILIARY EPITHELIUM IN VITRO , 1965, The Journal of cell biology.

[37]  W. K. Metcalfe Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish , 1985, The Journal of comparative neurology.

[38]  John C. Montgomery,et al.  Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator , 1998, The Journal of experimental biology.

[39]  J. Webb,et al.  Ectodermal Placodes Contributions to the Development of the Vertebrate Head , 1993 .

[40]  S M Khanna,et al.  Stiffness changes of the cupula associated with the mechanics of hair cells in the fish lateral line. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Stimulation of the Acoustico-Lateralis System of Clupeid Fish by External Sources and their Own Movements , 1993 .

[42]  N. Schellart,et al.  The pattern of trunk lateral line afferents and efferents in the rainbow trout (Salmo gairdneri). , 1992, Brain, behavior and evolution.

[43]  J. Wersäll,et al.  A STUDY OF THE ORIENTATION OF THE SENSORY HAIRS OF THE RECEPTOR CELLS IN THE LATERAL LINE ORGAN OF FISH, WITH SPECIAL REFERENCE TO THE FUNCTION OF THE RECEPTORS , 1962, The Journal of cell biology.

[44]  Eric Schabtach,et al.  Anatomy of the posterior lateral line system in young larvae of the zebrafish , 1985, The Journal of comparative neurology.

[45]  Paula M. Mabee,et al.  A dual embryonic origin for vertebrate mechanoreceptors. , 1994, Science.

[46]  Sietse M van Netten,et al.  Amiloride causes changes in the mechanical properties of hair cell bundles in the fish lateral line similar to those induced by dihydrostreptomycin , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[47]  J. Webb Ontogeny and phylogeny of the trunk lateral line system in cichlid fishes , 1990 .

[48]  C. Nüsslein-Volhard,et al.  Mutations affecting development of the zebrafish inner ear and lateral line. , 1996, Development.

[49]  J. Janssen,et al.  Comparison of response distance to prey via the lateral line in the ruffe and yellow perch , 1997 .

[50]  J. Webb Neuromast morphology and lateral line trunk canal ontogeny in two species of cichlids: An SEM study , 1989, Journal of morphology.

[51]  R. Northcutt,et al.  Development of lateral line organs in the axolotl , 1994, The Journal of comparative neurology.

[52]  J. Mogdans,et al.  Transformation of peripheral inputs by the first-order lateral line brainstem nucleus , 1998, Journal of Comparative Physiology A.

[53]  R. Northcutt,et al.  Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. , 1997, Brain, behavior and evolution.

[54]  P. J. Miller,et al.  The innervation of head neuromast rows in eleotridine gobies (Teleostei: Gobioidei) , 1991 .

[55]  Hiroshi Kobayashi,et al.  Cupular growth rate of free neuromasts in three species of cyprinid fish , 1992 .

[56]  M. Westerfield,et al.  Relationships among msx gene structure and function in zebrafish and other vertebrates. , 1997, Molecular biology and evolution.

[57]  J. Webb Comparative morphology and evolution of the lateral line system in the Labridae (Perciformes: Labroidei) , 1990 .

[58]  R. Leonard,et al.  The octavolateral systems in the stingray, Dasyatis sabina. I. Primary projections of the octaval and lateral line nerves , 1993, The Journal of comparative neurology.

[59]  J. Pickles,et al.  Paired development of hair cells in neuromasts of the teleost lateral line , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[60]  Y Yamada,et al.  Fine structure of the ordinary lateral line organ. I. The neuromast of lamprey, Entosphenus japonicus. , 1973, Journal of ultrastructure research.

[61]  M. Otsuka,et al.  Neuromast Formation in the Prehatching Embryos of the Cod Fish, Gadus Macrocephalus Tilesius , 1997 .

[62]  J T Corwin,et al.  Regenerated hair cells can originate from supporting cell progeny: evidence from phototoxicity and laser ablation experiments in the lateral line system , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  Horst Bleckmann,et al.  Electrophysiology of the Cephalic Lateral Line of the Surface-Feeding Fish Aplocheilus lineatus , 1998 .

[64]  J. S. Bradley,et al.  Validation of the use of cephalic lateral‐line papillae patterns for postulating relationships among gobioid genera , 1992 .

[65]  H. W. Reno Cephalic lateral-line systems of the cyprinid genus Hybopsis , 1969 .

[66]  Sietse M. van Netten,et al.  Mechanophysiological Properties of the Supraorbital Lateral Line Canal in Ruffe (Acerina cernua L.) , 1994 .

[67]  J. Montgomery,et al.  The lateral line can mediate rheotaxis in fish , 1997, Nature.

[68]  R L Puzdrowski,et al.  Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. , 1989, Brain, behavior and evolution.

[69]  S. Coombs,et al.  Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). , 1994, The Journal of experimental biology.

[70]  C. A. Mccormick The organization of the octavolateralis area in actinopterygian fishes: A new interpretation , 1982, Journal of morphology.

[71]  R. Northcutt,et al.  The Lateral Line System of Hagfishes (Craniata: Myxinoidea) , 1997 .

[72]  J. Pickles,et al.  Ultrastructure of free neuromasts of Bathygobius fuscus (gobiidae) and canal neuromasts of Apogon cyanosoma (apogonidae) , 1991, Journal of morphology.

[73]  Rainer W Friedrich,et al.  Genetic Analysis of Vertebrate Sensory Hair Cell Mechanosensation: the Zebrafish Circler Mutants , 1998, Neuron.

[74]  J. Corwin,et al.  Regeneration of sensory cells after laser ablation in the lateral line system: hair cell lineage and macrophage behavior revealed by time- lapse video microscopy , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  H. Vischer The development of lateral-line receptors in Eigenmannia (Teleostei, Gymnotiformes). I. The mechanoreceptive lateral-line system. , 1989, Brain, behavior and evolution.

[76]  K Brändle,et al.  Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls. , 1995, Developmental biology.

[77]  E. Denton,et al.  Mechanical factors in the excitation of clupeid lateral lines , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[78]  J. Gray,et al.  Patterns of Excitation of the Lateral Line of the Ruffe , 1989, Journal of the Marine Biological Association of the United Kingdom.

[79]  J. Kelly,et al.  Topography and mechanics of the cupula in the fish lateral line. I. Variation of cupular structure and composition in three dimensions , 1991, Journal of morphology.

[80]  S. Smith,et al.  Lateral‐line neuromast development in Ambystoma mexicanum and a comparison with Rana pipiens , 1988, Journal of morphology.

[81]  T Teyke,et al.  Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. , 1990, Brain, behavior and evolution.

[82]  C. B. Braun The sensory biology of the living jawless fishes: a phylogenetic assessment. , 1996, Brain, behavior and evolution.