Ju n 20 11 An efficient method to calculate excitation energy transfer in light harvesting systems . Application to the FMO complex

A master equation, derived from the non-Markovian quantum state diffusion (NMQSD), is used to calculate excitation energy transfer in the photosynthetic Fenna-Matthews-Olson (FMO) pigmentprotein complex at various temperatures. This approach allows us to treat spectral densities that contain explicitly the coupling to internal vibrational modes of the chromophores. Moreover, the method is very efficient, with the result that the transfer dynamics can be calculated within about one minute on a standard PC, making systematic investigations w.r.t. parameter variations tractable. After demonstrating that our approach is able to reproduce the results of the numerically exact hierarchical equations of motion (HEOM) approach, we show how the inclusion of vibrational modes influences the transfer.