Liquid Density and Critical Properties of Hydrocarbons Estimated from Molecular Structure

The paper provides new correlations for the estimation of the relative liquid density and critical parameters of hydrocarbons. The correlations employ molecular descriptors from computer simulation of molecular mechanics, which proved valuable in our previous work. High precision is achieved, without the use of unduly complex descriptors and rules, as a result of improved methodology. The new methodology includes a limit upon the functionality of the property database and its predesign by expanding the range and improving the distribution of the repeating structural features in the selected compounds.A compilation of estimated data for the liquid density and critical properties of some hydrocarbons of industrial importance for which no values have been available before is provided.

[1]  A. P. Popov,et al.  Vapour-liquid critical temperatures and pressures of normal alkanes with from 19 to 36 carbon atoms, naphthalene and m-terphenyl determined by the pulse-heating technique , 1997 .

[2]  Stephen E. Stein,et al.  Estimation of normal boiling points from group contributions , 1994, J. Chem. Inf. Comput. Sci..

[3]  Thomas E. Daubert,et al.  Vapor−Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes , 1996 .

[4]  Ioan Motoc,et al.  The Physical Meaning of Topological Indices , 1991, Comput. Chem..

[5]  W. Seider,et al.  Equilibrium solubilities of β-carotene in supercritical carbon dioxide , 1990 .

[6]  G. R. Somayajulu,et al.  Estimation procedures for critical constants , 1989 .

[7]  Roumiana P. Stateva,et al.  Estimation of normal boiling points of hydrocarbons from descriptors of molecular structure , 1999 .

[8]  C. Young,et al.  Vapor-Liquid Critical Properties of Elements and Compounds. 1. An Introductory Survey , 1995 .

[9]  John J. Marano,et al.  General equation for correlating the thermophysical properties of n-paraffins, n-olefins, and other homologous series : 2. Asymptotic behavior correlations for PVT properties , 1997 .

[10]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[11]  John J. Marano,et al.  General equation for correlating the thermophysical properties of n-paraffins, n-olefins, and other homologous series : 1. Formalism for developing asymptotic behavior correlations , 1997 .

[12]  Alan R. Katritzky,et al.  Normal Boiling Points for Organic Compounds: Correlation and Prediction by a Quantitative Structure-Property Relationship , 1998, J. Chem. Inf. Comput. Sci..

[13]  Chiehming J. Chang,et al.  Phase equilibrium of ethanol + CO{sub 2} and acetone + CO{sub 2} at elevated pressures , 1996 .

[14]  David M. VonNiederhausern,et al.  Critical Point and Vapor Pressure Measurements at High Temperatures by Means of a New Apparatus with Ultralow Residence Times , 2000 .

[15]  C. Tsonopoulos,et al.  Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkanes , 1995 .

[16]  M. Karelson,et al.  Correlation of Boiling Points with Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple Inorganics , 1996 .

[17]  A. P. Popov,et al.  Critical temperatures and pressures of linear alk-1-enes with 13 to 20 carbon atoms using the pulse- , 1999 .

[18]  Peter C. Jurs,et al.  Prediction of Critical Temperatures and Pressures of Industrially Important Organic Compounds from Molecular Structure , 1998, J. Chem. Inf. Comput. Sci..

[19]  C. Tsonopoulos,et al.  Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons , 1995 .

[20]  C. Tsonopoulos,et al.  Vapor-liquid critical properties of elements and compounds. 6: Unsaturated aliphatic hydrocarbons , 1996 .

[21]  Rafiqul Gani,et al.  Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method , 1995 .

[22]  Peter C. Jurs,et al.  Prediction of boiling points and critical temperatures of industrially important organic compounds from molecular structure , 1994, J. Chem. Inf. Comput. Sci..

[23]  S. Grigoras A structural approach to calculate physical properties of pure organic substances: The critical temperature, critical volume and related properties , 1990 .

[24]  E. Pardillo-Fontdevila,et al.  Estimation of pure compound properties using group‐interaction contributions , 1999 .

[25]  Consequences of property errors on the design of distillation columns , 2001 .

[26]  Robert D. Chirico,et al.  Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for 2-Aminoisobutyric Acid (2-Methylalanine), Acetic Acid, (Z)-5-Ethylidene-2-norbornene, Mesityl Oxide (4-Methyl-3-penten-2-one), 4-Methylpent-1-ene, 2,2‘-Bis(phenylthio)propane, and Glycidyl Phenyl Ether (1,2-Epoxy-3-phenoxypropane) , 1997 .

[27]  Y. Arai,et al.  Calculation of normal boiling points for alkane isomers by a second order group contribution method , 1999 .