Double circulant LCD codes over Z4

Abstract The codes in the title are studied with respect to existence, enumeration and asymptotic performance. Their Gray images are shown to satisfy a modified Gilbert-Varshamov bound. Explicit counting formulas are derived. Examples of modest lengths are given where Gray images of LCD Z 4 -codes outperform the best known binary linear LCD codes.

[1]  Peter J. Cameron,et al.  $$\mathbb {Z}_{4}$$Z4-codes and their Gray map images as orthogonal arrays , 2015, Des. Codes Cryptogr..

[2]  E. J. Weldon,et al.  Some Results on Quasi-Cyclic Codes , 1969, Inf. Control..

[3]  James L. Massey,et al.  Linear codes with complementary duals , 1992, Discret. Math..

[4]  Patrick Solé,et al.  On the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings , 2003, Des. Codes Cryptogr..

[5]  Zhe-Xian X. Wan,et al.  Quaternary Codes , 1997 .

[6]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[7]  Patrick Solé,et al.  On self-dual double circulant codes , 2016, Designs, Codes and Cryptography.

[8]  Patrick Solé,et al.  On the algebraic structure of quasi-cyclic codes I: Finite fields , 2001, IEEE Trans. Inf. Theory.

[9]  Claude Carlet,et al.  Statistical properties of side-channel and fault injection attacks using coding theory , 2018, Cryptography and Communications.

[10]  Patrick Solé,et al.  Quasi-cyclic complementary dual codes , 2016, Finite Fields Their Appl..

[11]  Claude Carlet,et al.  Complementary dual codes for counter-measures to side-channel attacks , 2016, Adv. Math. Commun..

[12]  C. Hooley On Artin's conjecture. , 1967 .

[13]  Sihem Mesnager,et al.  Linear Codes Over 𝔽q Are Equivalent to LCD Codes for q>3 , 2018, IEEE Trans. Inf. Theory.

[14]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[15]  Jon-Lark Kim,et al.  The combinatorics of LCD codes: linear programming bound and orthogonal matrices , 2015, Int. J. Inf. Coding Theory.