Lower bounds for the bilinear complexity of associative algebras

Abstract. Let R(A) denote the bilinear complexity (also called rank) of a finite dimensional associative algebra A.¶We prove that $ R(A) \ge {5 \over 2} {\rm dim}\,A - 3({n_1}+\cdots+{n_t}) $ if the decomposition of $ A/{\rm rad}\,A \cong {A_1} \times \cdots \times {A_t} $ into simple algebras $ {A_\tau} \cong D^{n_\tau\times n_\tau}_{\tau} $ contains only noncommutative factors, that is, the division algebra $ D_\tau $ is noncommutative or $ n_\tau \ge 2 $. In particular, $ n \times n $-matrix multiplication requires at least $ {5\over2}n^2 - 3n $ essential bilinear multiplications. We also derive lower bounds of the form $ {5 \over 2}n^2 - 3n $ essential bilinear multiplications. We also derive lower bounds of the form $ {5 \over 2} - o(1)) \cdot {\rm dim}\,A $ for the algebra of upper triangular $ n \times n $-matrices and the algebra $ k[X,Y]/(X^{n+1}, X^{n}Y, X^{n-1}Y^2,\cdots,Y^{n+1}) $ of truncated bivariate polynomials in the indeterminates X,Y over some field k.¶A class of algebras that has received wide attention in this context con-sists of those algebras A for which the Alder—Strassen Bound is sharp, i.e., R(A) = 2dim A—t is the number of maximal twosided ideals in A. These algebras are called algebras of minimal rank. We determine all semisimple algebras of minimal rank over arbitrary fields and all algebras of minimal rank over algebraically closed fields.

[1]  Jacques Morgenstern,et al.  On associative algebras of minimal rank , 1984, International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.

[2]  Hans F. de Groote Characterization of Division Algebras of Minimal Rank and the Structure of Their Algorithm Varieties , 1983, SIAM J. Comput..

[3]  Markus Bläser Bivariate Polynomial Multiplication , 1998, FOCS.

[4]  Shmuel Winograd On Multiplication in Algebraic Extension Fields , 1979, Theor. Comput. Sci..

[5]  David P. Dobkin,et al.  On the optimal evaluation of a set of bilinear forms , 1978 .

[6]  Hans F. de Groote Lectures on the Complexity of Bilinear Problems , 1987, Lecture Notes in Computer Science.

[7]  Michael Clausen,et al.  On a class of primary algebras of minimal rank , 1985 .

[8]  Markus Bläser Lower bounds for the multiplicative complexity of matrix multiplication , 1999, computational complexity.

[9]  Markus Bläser Untere Schranken für den Rang assoziativer Algebren , 1999 .

[10]  Markus Bläser A 5/2 n2-Lower Bound for the Rank of n×n Matrix Multiplication over Arbitrary Fields , 1999, FOCS.

[11]  Volker Strassen,et al.  On the Algorithmic Complexity of Associative Algebras , 1981, Theor. Comput. Sci..

[12]  Y. Drozd,et al.  Finite dimensional algebras , 1994 .

[13]  Joos Heintz,et al.  Commutative algebras of minimal rank , 1983 .

[14]  Nader H. Bshouty A Lower Bound for Matrix Multiplication , 1989, SIAM J. Comput..

[15]  V. Strassen Gaussian elimination is not optimal , 1969 .

[16]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[17]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[18]  Hans F. de Groote On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings I. The Isotropy Group of a Bilinear Mapping , 1978, Theor. Comput. Sci..

[19]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[20]  Werner Hartmann On the Multiplicative Complexity of Modules Over Associative Algebras , 1985, SIAM J. Comput..