On Riemann-Roch Formulas for Multiplicities

A Theorem due to Guillemin and Sternberg about geometric quantization of Hamiltonian actions of compact Lie groups $G$ on compact Kaehler manifolds says that the dimension of the $G$-invariant subspace is equal to the Riemann-Roch number of the symplectically reduced space. Combined with the shifting-trick, this gives explicit formulas for the multiplicities of the various irreducible components. One of the assumptions of the Theorem is that the reduction is regular, so that the reduced space is a smooth symplectic manifold. In this paper, we prove a generalization of this result to the case where the reduced space may have orbifold singularities. Our proof uses localization techniques from equivariant cohomology, and relies in particular on recent work of Jeffrey-Kirwan and Guillemin. Since there are no complex geometry arguments involved, the result also extends to non Kaehlerian settings.

[1]  Shlomo Sternberg,et al.  Geometric quantization and multiplicities of group representations , 1982 .

[2]  Two-dimensional gauge theories revisited , 1992, hep-th/9204083.

[3]  V. Guillemin,et al.  Heckman, Kostant, and Steinberg Formulas for Symplectic Manifolds , 1990 .

[4]  Reyer Sjamaar Holomorphic slices, symplectic reduction and multiplicities of representations , 1993 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  E. Ehrhart,et al.  Polynômes arithmétiques et méthode des polyèdres en combinatoire , 1974 .

[7]  S. Sternberg,et al.  Symplectic Techniques in Physics , 1984 .

[8]  M. Atiyah Elliptic operators and compact groups , 1974 .

[9]  M. Atiyah,et al.  The Index of elliptic operators. 3. , 1968 .

[10]  L. C. Jeffrey,et al.  Localization for nonabelian group actions , 1993 .

[11]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[12]  M. Vergne,et al.  The Equivariant Index and Kirillov's Character Formula , 1985 .

[13]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[14]  I. Satake The Gauss-Bonnet Theorem for V-manifolds , 1957 .

[15]  M. Atiyah,et al.  The Index of Elliptic Operators: IV , 1971 .

[16]  M. Atiyah,et al.  The Index of Elliptic Operators: II , 1968 .

[17]  M. Vergne QUANTIFICATION GEOMETRIQUE ET MULTIPLICITES , 1994 .

[18]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[19]  J. Duistermaat,et al.  On the variation in the cohomology of the symplectic form of the reduced phase space , 1982 .

[20]  Eugene Lerman,et al.  On the Kostant multiplicity formula , 1988 .

[21]  Michael Atiyah,et al.  The moment map and equivariant cohomology , 1984 .

[22]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[23]  J. Duistermaat Equivariant cohomology and stationary phase , 1993 .

[24]  T. Kawasaki The Riemann-Roch theorem for complex V -manifolds , 1979 .