A bootstrap control chart for Birnbaum–Saunders percentiles

The problem of detecting a shift in the percentile of a Birnbaum–Saunders population in a process monitoring situation is considered. For example, such problems may arise when the quality characteristic of interest is tensile strength or breaking stress. The parametric bootstrap method is used to develop a quality control chart for monitoring percentiles when process measurements have a Birnbaum–Saunders distribution. Through extensive Monte Carlo simulations, we investigate the behavior and performance of the proposed bootstrap percentile charts. Average run lengths of the proposed percentile chart are also investigated. Illustrative examples with the data concerning the tensile strength of the aluminum sheeting are presented. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  Debasis Kundu,et al.  Modified moment estimation for the two-parameter Birnbaum-Saunders distribution , 2003, Comput. Stat. Data Anal..

[2]  G. A. Young,et al.  Bootstrap: More than a Stab in the Dark? , 1994 .

[3]  W. J. Padgett,et al.  Lower confidence bounds for percentiles of weibull and birnbaum-saunders distributions , 2003 .

[4]  Loon Ching Tang,et al.  Percentile bounds and tolerance limits for the birnbaum-saunders distribution , 1994 .

[5]  W. J. Padgett,et al.  A Bootstrap Control Chart for Weibull Percentiles , 2006, Qual. Reliab. Eng. Int..

[6]  W. J. Padgett,et al.  Shewhart-type charts for percentiles of strength distributions , 1990 .

[7]  William H. Woodall,et al.  The Performance of Bootstrap Control Charts , 1998 .

[8]  Jen Tang,et al.  Control Charts for Dependent and Independent Measurements Based on Bootstrap Methods , 1996 .

[9]  Lee J. Bain,et al.  Inferences on the Parameters of the Birnbaum-Saunders Fatigue Life Distribution Based on Maximum Likelihood Estimation , 1981 .

[10]  George Tagaras,et al.  Economic X̄ Charts with Asymmetric Control Limits , 1989 .

[11]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[12]  Arzu Onar,et al.  Inverse gaussian accelerated test models based on cumulative damage , 2000 .

[13]  Sam C. Saunders,et al.  ESTIMATION FOR A FAMILY OF LIFE DISTRIBUTIONS WITH APPLICATIONS TO FATIGUE , 1969 .

[14]  R. Plante,et al.  Statistical Process Control via the Subgroup Bootstrap , 1995 .

[15]  Authors' Biographies , 2005 .

[16]  Z. Birnbaum,et al.  A new family of life distributions , 1969 .

[17]  Richard L. Marcellus Performance Measures for ―X Charts with Asymmetric Control Limits , 2006, Qual. Reliab. Eng. Int..

[18]  S. C. Saunders,et al.  A Statistical Model for Life-Length of Materials , 1958 .

[19]  Rob J Hyndman,et al.  Sample Quantiles in Statistical Packages , 1996 .

[20]  S. D. Durham,et al.  Cumulative damage models for system failure with application to carbon fibers and composites , 1997 .

[21]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[22]  Sam C. Saunders,et al.  Estimation for a family of life distributions with applications to fatigue , 1969, Journal of Applied Probability.