Universal quantum criticality in the metal-insulator transition of two-dimensional interacting Dirac electrons

The metal-insulator transition has been a subject of intense research since Nevil Mott has first proposed that the metallic behavior of interacting electrons could turn to the insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. We find thereby that the transition is continuous and determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. We furthermore discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: the metal-insulator transition is triggered only by the vanishing of the quasiparticle weight but not the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture, but is rather consistent with the low energy behavior of the Gross-Neveu model.

[1]  N F Mott,et al.  The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals , 1949 .

[2]  C. Kittel Introduction to solid state physics , 1954 .

[3]  Richard Phillips Feynman,et al.  Energy Spectrum of the Excitations in Liquid Helium , 1956 .

[4]  A. Migdal THE MOMENTUM DISTRIBUTION OF INTERACTING FERMI PARTICLES , 1957 .

[5]  H. Trotter On the product of semi-groups of operators , 1959 .

[6]  M. Gutzwiller,et al.  Correlation of Electrons in a Narrow s Band , 1965 .

[7]  D. Pines,et al.  The theory of quantum liquids , 1968 .

[8]  William F. Brinkman,et al.  Application of Gutzwiller's Variational Method to the Metal-Insulator Transition , 1970 .

[9]  David J. Gross,et al.  Dynamical symmetry breaking in asymptotically free field theories , 1974 .

[10]  M. Suzuki,et al.  Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems , 1976 .

[11]  D. Bailin Field theory , 1979, Nature.

[12]  R. Sugar,et al.  Monte Carlo calculations of coupled boson-fermion systems. I , 1981 .

[13]  J. E. Hirsch,et al.  Discrete Hubbard-Stratonovich transformation for fermion lattice models , 1983 .

[14]  M. Fisher,et al.  Universal critical amplitudes in finite-size scaling , 1984 .

[15]  Hirsch Two-dimensional Hubbard model: Numerical simulation study. , 1985, Physical review. B, Condensed matter.

[16]  G. Baym,et al.  The development of the quantum-mechanical electron theory of metals: 1928-1933 , 1987 .

[17]  Zou,et al.  SU(2) gauge symmetry of the large-U limit of the Hubbard model. , 1988, Physical review. B, Condensed matter.

[18]  J. Cardy Finite-size scaling , 1988 .

[19]  I. Affleck,et al.  Large-n limit of the Heisenberg-Hubbard model: Implications for high-Tc superconductors. , 1988, Physical review. B, Condensed matter.

[20]  White,et al.  Numerical study of the two-dimensional Hubbard model. , 1989, Physical review. B, Condensed matter.

[21]  D. Vollhardt,et al.  Correlated Lattice Fermions in High Dimensions , 1989 .

[22]  Gebhard Gutzwiller correlated wave functions in finite dimensions d: A systematic expansion in 1/d. , 1990, Physical review. B, Condensed matter.

[23]  J. Gracey,et al.  Three-loop calculations in the O(N) gross-neveu model , 1990 .

[24]  Sandro Sorella,et al.  Semi-Metal-Insulator Transition of the Hubbard Model in the Honeycomb Lattice , 1992 .

[25]  B. Rosenstein,et al.  Critical exponents of new universality classes , 1993 .

[26]  A. N. Vasil'ev,et al.  The 1/n expansion in the Gross-Neveu model: Conformal bootstrap calculation of the index η in order 1/n3 , 1993 .

[27]  P. Lacock,et al.  Critical behaviour of the three-dimensional Gross-Neveu and Higgs-Yukawa models , 1994 .

[28]  J. Gracey COMPUTATION OF CRITICAL EXPONENT η AT O(1/N3) IN THE FOUR-FERMI MODEL IN ARBITRARY DIMENSIONS , 1993, hep-th/9306107.

[29]  Si,et al.  Critical behavior near the Mott transition in the Hubbard model. , 1995, Physical review letters.

[30]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[31]  C. Wetterich,et al.  Critical exponents of the Gross-Neveu model from the effective average action. , 2001, Physical review letters.

[32]  C. Wetterich,et al.  Phase transition and critical behavior of the d=3 Gross-Neveu model , 2002 .

[33]  Y. Hatsugai,et al.  Mott transition in the two-dimensional flux phase , 2001, cond-mat/0105334.

[34]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[35]  E. Dagotto,et al.  Role of strong correlation in the recent angle-resolved photoemission spectroscopy experiments on cuprate superconductors. , 2005, Physical review letters.

[36]  Michele Fabrizio,et al.  Variational description of Mott insulators. , 2004, Physical Review Letters.

[37]  A. Sandvik,et al.  Data collapse in the critical region using finite-size scaling with subleading corrections , 2005, cond-mat/0505194.

[38]  Unconventional metal-insulator transition in two dimensions , 2005, cond-mat/0509062.

[39]  I. Herbut,et al.  Interactions and phase transitions on graphene's honeycomb lattice. , 2006, Physical review letters.

[40]  R. Asgari,et al.  Graphene: A pseudochiral Fermi liquid , 2007, 0704.3786.

[41]  I. Herbut,et al.  Theory of interacting electrons on the honeycomb lattice , 2008, 0811.0610.

[42]  O. Vafek,et al.  Relativistic Mott criticality in graphene , 2009, 0904.1019.

[43]  K. Kuroki,et al.  Finite-temperature semimetal-insulator transition on the honeycomb lattice , 2009, 0903.2938.

[44]  Z. Meng,et al.  Quantum spin liquid emerging in two-dimensional correlated Dirac fermions , 2010, Nature.

[45]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[46]  Wéi Wú,et al.  Interacting Dirac fermions on honeycomb lattice , 2010, 1005.2043.

[47]  Kenji Harada,et al.  Bayesian inference in the scaling analysis of critical phenomena. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Seiji Yunoki,et al.  Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice , 2012, Scientific Reports.

[49]  R. Scalettar,et al.  Quantum disordered phase near the Mott transition in the staggered-flux Hubbard model on a square lattice. , 2012, Physical review letters.

[50]  Anyi Li,et al.  Quantum critical behavior in three dimensional lattice Gross-Neveu models , 2013, 1304.7761.

[51]  F. Assaad,et al.  Pinning the Order: The Nature of Quantum Criticality in the Hubbard Model on Honeycomb Lattice , 2013, 1304.6340.

[52]  D. Sénéchal,et al.  Absence of spin liquid in nonfrustrated correlated systems. , 2013, Physical review letters.

[53]  S. Sorella,et al.  Mott Transition in the 2D Hubbard Model with π-Flux , 2014 .

[54]  H. Yao,et al.  Fermion-sign-free Majarana-quantum-Monte-Carlo studies of quantum critical phenomena of Dirac fermions in two dimensions , 2014, 1411.7383.

[55]  A. Pelissetto,et al.  Finite-size scaling at quantum transitions , 2014, 1401.0788.

[56]  A. Tremblay,et al.  Phase diagram and Fermi liquid properties of the extended Hubbard model on the honeycomb lattice , 2013, 1312.5728.

[57]  George H. Booth,et al.  Intermediate and spin-liquid phase of the half-filled honeycomb Hubbard model , 2014, 1402.5622.

[58]  Matthias Troyer,et al.  Fermionic quantum critical point of spinless fermions on a honeycomb lattice , 2014, 1407.0029.

[59]  I. Herbut,et al.  Antiferromagnetic critical point on graphene's honeycomb lattice: A functional renormalization group approach , 2014, 1402.6277.

[60]  K. Schmidt,et al.  Mott physics in the half-filled Hubbard model on a family of vortex-full square lattices , 2014, 1408.0022.

[61]  F. Assaad,et al.  N ov 2 01 4 Fermionic quantum criticality in honeycomb and π-flux Hubbard models , 2014, 1411.2502.

[62]  Lei Wang,et al.  Stochastic series expansion simulation of the t -V model , 2016, 1602.02095.

[63]  Stefan Wessel,et al.  Thermal Ising transitions in the vicinity of two-dimensional quantum critical points , 2016, 1602.02096.