Multi-modal sensor fusion for highly accurate vehicle motion state estimation

Abstract In the context of autonomous driving in urban environments accurate and reliable information about the vehicle motion is crucial. This article presents a multi-modal sensor fusion scheme that, based on standard production car sensors and an inertial measurement unit, estimates the three-dimensional vehicle velocity and attitude angles (pitch and roll). Moreover, in order to enhance the estimation accuracy, the scheme simultaneously estimates the gyroscope and accelerometer biases. The approach relies on a state-affine representation of a kinematic model with an additional measurement equation based on a single-track model. The sensor fusion scheme is built upon a recently proposed adaptive estimator, which allows a direct consideration of model uncertainties and sensor noise. In order to provide accurate estimates during collision avoidance manoeuvres, a measurement covariance adaptation is introduced, which reduces the influence of the single-track model when its information is superfluous. A validation using experimental data demonstrates the effectiveness of the method during both regular urban drives and collision avoidance manoeuvres.

[1]  Dieter Schramm,et al.  Vehicle Dynamics: Modeling and Simulation , 2014 .

[2]  J. Karl Hedrick,et al.  Vehicle Speed Estimation Using Accelerometer and Wheel Speed Measurements , 2002 .

[3]  H Henk Nijmeijer,et al.  Experimental validation of vehicle velocity, attitude and IMU bias estimation , 2019 .

[4]  Toshiyuki Ohtsuka,et al.  Model structure simplification of Nonlinear Systems via immersion , 2005, IEEE Transactions on Automatic Control.

[5]  D. G. Fisher,et al.  Improved least squares identification , 1987 .

[6]  P. Groves Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems , 2007 .

[7]  Gildas Besancon A Link between Output Time Derivatives and Persistent Excitation for Nonlinear Observers , 2016 .

[8]  Jan Wendel Integrierte Navigationssysteme: Sensordatenfusion, GPS und Inertiale Navigation , 2007 .

[9]  Andreas Kugi,et al.  Unscented Kalman filter for vehicle state estimation , 2011 .

[10]  Frank Gauterin,et al.  GNSS-shortages-resistant and self-adaptive rear axle kinematic parameter estimator (SA-RAKPE) , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[11]  Ali Charara,et al.  Estimation of vehicle sideslip, tire force and wheel cornering stiffness , 2009 .

[12]  Seibum Choi,et al.  Vehicle Velocity Observer Design Using 6-D IMU and Multiple-Observer Approach , 2012, IEEE Transactions on Intelligent Transportation Systems.

[13]  Jörg Raisch,et al.  EKF for simultaneous vehicle motion estimation and IMU bias calibration with observability-based adaptation , 2018, 2018 Annual American Control Conference (ACC).

[14]  Péter Gáspár,et al.  Side-slip Angle Estimation of Autonomous Road Vehicles Based on Big Data Analysis , 2018, 2018 26th Mediterranean Conference on Control and Automation (MED).

[15]  Lars Petersson,et al.  Practical considerations in precise calibration of a low-cost MEMS IMU for road-mapping applications , 2012, 2012 American Control Conference (ACC).

[16]  Vicent Rodrigo Marco,et al.  Nonlinear observer with observability-based parameter adaptation for vehicle motion estimation , 2018 .

[17]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[18]  Marco Gadola,et al.  On the vehicle sideslip angle estimation: a literature review of methods, models and innovations , 2018 .

[19]  M. Weydert,et al.  Model-based ego-motion and vehicle parameter estimation using visual odometry , 2012, 2012 16th IEEE Mediterranean Electrotechnical Conference.

[20]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[21]  Qinghua Zhang,et al.  Adaptive Kalman filter for actuator fault diagnosis , 2017, Autom..

[22]  Rajesh Rajamani,et al.  Development and Experimental Evaluation of a Slip Angle Estimator for Vehicle Stability Control , 2006, IEEE Transactions on Control Systems Technology.

[23]  Susan A Ferguson,et al.  The Effectiveness of Electronic Stability Control in Reducing Real-World Crashes: A Literature Review , 2007, Traffic injury prevention.

[24]  M. Anguelova Observability and identifiability of nonlinear systems with applications in biology , 2007 .

[25]  Matteo Corno,et al.  Vehicle sideslip estimator using load sensing bearings , 2016 .

[26]  S.M. Savaresi,et al.  Longitudinal vehicle speed estimation for traction and braking control systems , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[27]  M. Milanese,et al.  Direct Virtual Sensor (DVS) design in vehicle sideslip angle estimation , 2007, 2007 American Control Conference.

[28]  Willy Klier,et al.  Robust Estimation of Vehicle Sideslip Angle - An Approach w/o Vehicle and Tire Models , 2008 .

[29]  James F. Whidborne,et al.  A review of ground vehicle dynamic state estimations utilising GPS/INS , 2011 .

[30]  Giulio Panzani,et al.  Vehicle sideslip estimation: A kinematic based approach , 2017 .

[31]  H.F. Grip,et al.  Vehicle sideslip estimation , 2009, IEEE Control Systems.

[32]  J. Grizzle,et al.  The Extended Kalman Filter as a Local Asymptotic Observer for Nonlinear Discrete-Time Systems , 1992, 1992 American Control Conference.

[33]  R. Isermann,et al.  Fahrdynamik-Regelung. Modellbildung, Fahrerassistenzsysteme, Mechatronik , 2009 .

[34]  Liyu Cao,et al.  A directional forgetting algorithm based on the decomposition of the information matrix , 2000, Autom..

[35]  Alexandru Ioan Ticlea,et al.  Techniques d'immersion pour l'estimation non linéaire : application aux systèmes de puissance , 2006 .

[36]  Alexander Katriniok,et al.  Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability , 2016, IEEE Transactions on Control Systems Technology.

[37]  Marco Gadola,et al.  Estimation of Vehicle Side-Slip Angle Using an Artificial Neural Network , 2018 .

[38]  Tor Arne Johansen,et al.  Vehicle velocity estimation using nonlinear observers , 2006, Autom..

[39]  Gildas Besancon,et al.  State and parameter estimation via discrete-time exponential forgetting factor observer , 2009 .

[40]  Fabio Dovis,et al.  A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems , 2013, Sensors.