Integrated Computational Materials and Production Engineering (ICMPE)

The research area “Integrative Computational Materials and Production Engineering” is based on the partial integration of individual models areas within separated simulation platforms with the objective of further development and integration into a single comprehensive ICMPE (Integrative Computational Materials and Production Engineering) platform that combines materials and machining simulation with factory and production planning. In order to realize an operational platform concept, the AixViPMaP has been implemented. AixViPMaP serves as a technology platform for the knowledge-driven design, implementation and improvement of complicated process chains for materials in high-value components. This allows manufacturing related influences to be considered during production in order to optimize process performance and materials properties. The extension and application of the AixViPMaP platform towards production modeling in the sense of an ICMPE based on one holistic system integrates production related models with all material-related models into a single, unified concept. Advanced test cases are under examination to validate and assess this new integrated approach (e.g., new alloys for large gears for the wind industry).

[1]  Wolfgang Bleck,et al.  Prediction of abnormal grain growth during high temperature treatment , 2010 .

[2]  Y. Murakami Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions , 2002 .

[3]  T. M. Scoonover,et al.  Hardenability of low- and medium-carbon Mn-Cr-Ni-Mo steels , 1984 .

[4]  Waloddi Weibull,et al.  Zur Abhängigkeit der Festigkeit von der Probengröße , 1959 .

[5]  H. Mader,et al.  The effect of particle shape on suspension viscosity and implications for magmatic flows , 2011 .

[6]  Christian A. Ringhofer,et al.  A Model for the Dynamics of large Queuing Networks and Supply Chains , 2006, SIAM J. Appl. Math..

[7]  J. M. Tartaglia,et al.  Hyperbolic secant method for predicting Jominy hardenability: An example using 0.2C-Ni-Cr-Mo steels , 1986 .

[8]  R. Spina,et al.  Analysis of polymer crystallization and residual stresses in injection molded parts , 2014 .

[9]  Piotr Kula,et al.  Vacuum carburizing—process optimization , 2005 .

[10]  Fahmi Bedoui,et al.  Micromechanical modeling of isotropic elastic behavior of semicrystalline polymers , 2006 .

[11]  Franz Hoffmann,et al.  Feinkornbeständigkeit von Bauteilen aus dem mikrolegierten Werkstoff 18CrNiMo7-6 in Abhängigkeit der Prozesskette , 2010 .

[12]  Julian M. Allwood,et al.  Sustainable Materials - With Both Eyes Open , 2012 .

[13]  Z. Gawroński,et al.  Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels , 2010 .

[14]  Emilia Wolowiec,et al.  “Boost-diffusion” vacuum carburising – Process optimisation , 2014 .

[15]  Pier Luca Maffettone,et al.  Microrheological Modeling of Flow-Induced Crystallization , 2001 .

[16]  Rainer Reimert,et al.  Pyrolysis of propane under vacuum carburizing conditions: An experimental and modeling study , 2008 .

[17]  Ignace Verpoest,et al.  Stress distribution in outer and inner plies of textile laminates and novel boundary conditions for unit cell analysis , 2010 .

[18]  Dieter an Mey,et al.  Towards an accurate simulation of the crystallisation process in injection moulded plastic components by hybrid parallelisation , 2014, Int. J. High Perform. Comput. Appl..

[19]  Masamichi Kobayashi,et al.  Molecular theoretical study of the intimate relationships between structure and mechanical properties of polymer crystals , 1996 .

[20]  G. J. Schmitz,et al.  Software Solutions for ICME , 2016 .

[21]  Christian Hopmann,et al.  Thermal Simulation of Polymer Crystallization during Post-Filling , 2013 .

[22]  David K. Matlock,et al.  The Influence of Niobium Microalloying on Austenite Grain Coarsening Behavior of Ti-modified SAE 8620 Steel , 2007 .

[23]  Benedetto Piccoli,et al.  Modeling, Simulation, and Optimization of Supply Chains - A Continuous Approach , 2010 .

[24]  Christian Hopmann,et al.  Test Case: Technical Plastic Parts , 2012 .

[25]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[26]  Axel Klar,et al.  Traffic flow: models and numerics , 2004 .

[27]  Peter Kennedy,et al.  Modeling of flow-induced crystallization of colored polypropylene in injection molding , 2010 .

[28]  Yukitaka Murakami,et al.  Material defects as the basis of fatigue design , 2012 .

[29]  C. Sellars,et al.  On the mechanism of hot deformation , 1966 .

[30]  Mattia Bongini Invisible Sparse Control of Self-Organizing Agents Leaving Unknown Environments (joint work with G. Albi, E. Cristiani, and D. Kalise) , 2015 .

[31]  R. Colby,et al.  Chain Dimensions and Entanglement Spacings , 2007 .

[32]  Herbert Schifferl,et al.  Kostenoptimierung durch Änderung der Legierungszuschläge für wärmebehandelbare Baustähle , 2012 .

[33]  Axel Klar,et al.  A Network Model for Supply Chains with Multiple Policies , 2007, Multiscale Model. Simul..

[34]  M. Santillana,et al.  Thermo-mechanical properties and cracking during solidification of thin slab cast steel , 2013 .

[35]  Piotr Kula,et al.  The Precipitation and Dissolution of Alloy Iron Carbides in Vacuum Carburization Processes for Automotive and Aircraft Applications - Part II , 2012 .

[36]  John D. Hoffman,et al.  The Rate of Crystallization of Linear Polymers with Chain Folding , 1976 .

[37]  Hardy Mohrbacher,et al.  Optimization of molybdenum alloyed carburizing steels by Nb microalloying for large gear applications , 2011 .

[38]  Insa Lütkehus,et al.  Potenzial der Windenergie an Land , 2013 .

[39]  Tadej Muhič,et al.  Analysis of the main types of damage on a pair of industrial dies for hot forging car steering mechanisms , 2011 .

[40]  Motowo Takayanagi,et al.  Preparation of ultrahigh modulus isotactic polypropylene by means of zone drawing , 1979 .

[41]  Dr.-Ing. Dr.-Ing. E.h. Gustav Niemann,et al.  Zahnradgetriebe — Grundlagen (Stirnräder) , 2003 .

[42]  Bernd Edenhofer,et al.  New developments in thermo-chemical diffusion processes , 2005 .

[43]  G. G. Peters,et al.  Development and Validation of a Recoverable Strain‐Based Model for Flow‐Induced Crystallization of Polymers , 2001 .

[44]  Goerg H. Michler,et al.  Nano- and Micromechanics of Polymers: Structure Modification and Improvement of Properties , 2012 .

[45]  E. Sanchez-Palencia Homogenization method for the study of composite media , 1983 .

[46]  Urs Eppelt,et al.  Towards integrative computational materials engineering of steel components , 2011, Prod. Eng..

[47]  R. Gorockiewicz,et al.  The kinetics of low-pressure carburizing of alloy steels , 2011 .

[48]  Clemens Holzer,et al.  Determination of the transition temperature at different cooling rates and its influence on prediction of shrinkage and warpage in injection molding simulation , 2012 .

[49]  Markus Klein Zur Fresstragfähigkeit von Kegelrad- und Hypoidgetrieben , 2012 .

[50]  Masaru Matsuo,et al.  Elastic modulus of isotactic polypropylene in the crystal chain direction as measured by x-ray diffraction , 1986 .

[51]  Christian Hopmann,et al.  Mesoscale simulation of the solidification process in injection moulded parts , 2016 .

[52]  D. Liedtke,et al.  Über den Zusammenhang zwischen dem Kohlenstoffgehalt in Stählen und der Härte des Martensits , 2003 .

[53]  Gad Marom,et al.  Lamellar twisting in α isotactic polypropylene transcrystallinity investigated by synchrotron microbeam X-ray diffraction , 2001 .

[54]  S. Jeschke,et al.  Integrative Production Technology for High-wage Countries , 2012 .

[55]  Richard D. Sisson,et al.  Effect of Alloy Composition on Carburizing Performance of Steel , 2009 .

[56]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[57]  G. Kreiss,et al.  A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.

[58]  Georg J. Schmitz,et al.  ICME — A Mere Coupling of Models or a Discipline of Its Own? , 2013 .

[59]  Michael Herty,et al.  Kinetic part-feeding models for assembly lines in automotive industries , 2015 .

[60]  T. Amano,et al.  Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition , 1973 .

[61]  King Lun Yeung,et al.  Direct Observation of Growth of Lamellae and Spherulites of a Semicrystalline Polymer by AFM , 2001 .

[62]  M. Hirscvogel,et al.  Some applications of cold and warm forging , 1992 .

[63]  Christian G'Sell,et al.  Polymers under mechanical stress: Deformation of the nanostructure of isotactic polypropylene revealed by scanning force microscopy , 1997 .

[64]  Sergey Konovalov,et al.  Numerische Entwicklung eines mikrolegierten Einsatzstahls für die Hochtemperatur-Aufkohlung , 2014 .

[65]  Markus Apel,et al.  Thermo‐elastic Homogenization of 3‐D Steel Microstructure Simulated by the Phase‐field Method , 2010 .

[66]  A. W. A. Konter,et al.  Industrial Needs for ICME , 2016 .

[67]  Markus Bambach,et al.  Recent developments in modeling of hot rolling processes: Part I - Fundamentals , 2013 .

[68]  Athanasios G. Mamalis,et al.  Simulation of the precision forging of bevel gears using implicit and explicit FE techniques , 1996 .

[69]  Thomas Frühe Berechnung und Minimierung der Zahnfußspannung von Standard- und LowLoss-Verzahnungen , 2012 .

[70]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[71]  Hermann Janeschitz-Kriegl Crystallization Modalities in Polymer Melt Processing , 2018 .

[72]  C. M. Sellars,et al.  Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation , 1969 .

[73]  Jonathan M Cullen,et al.  Mapping the global flow of steel: from steelmaking to end-use goods. , 2012, Environmental science & technology.

[74]  Masamichi Kobayashi,et al.  Vibrational Spectra and Theoretical Three-Dimensional Elastic Constants of Isotactic Polypropylene Crystal: An Important Role of Anharmonic Vibrations , 1992 .

[75]  Michael Herty,et al.  Optimization of a model Fokker-Planck equation , 2012 .