Episodic accretion in magnetically layered protoplanetary discs

We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 AU such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion onto the protostar occurs in ∼ 10 4 yr bursts with u M ∼ 10 −5 M⊙yr −1 , separated by quiescent intervals lasting ∼ 10 5 yr where u M ≈ 10 −8 M⊙yr −1 . Such bursts could lead to repeated episodes of strong mass outflow in Young Stellar Objects. The transition to this episodic mode of accretion occurs at an early epoch (t ≪ 1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at r ∼ 1 AU. The predicted rate of low mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1 – 3 AU.

[1]  J. M. Champney,et al.  Particle-Gas Dynamics in the Midplane of a Protoplanetary Nebula , 1993 .

[2]  S. Miyama,et al.  Magnetorotational Instability in Protoplanetary Disks. I. On the Global Stability of Weakly Ionized Disks with Ohmic Dissipation , 1999 .

[3]  D. Lin,et al.  USING FU ORIONIS OUTBURSTS TO CONSTRAIN SELF-REGULATED PROTOSTELLAR DISK MODELS , 1993, astro-ph/9312015.

[4]  J. E. Pringle,et al.  A viscosity prescription for a self-gravitating accretion disc⋆ , 1987 .

[5]  J. Cannizzo The accretion disk limit cycle model : toward an understanding of the long-term behavior of SS Cygni , 1993 .

[6]  T. Stepinski,et al.  Evolution of magnetized protoplanetary disks , 1995 .

[7]  M. Wardle The Balbus-Hawley instability in weakly ionized discs , 1998, astro-ph/9809349.

[8]  R. Paul Butler,et al.  Planets Orbiting Other Suns , 2000 .

[9]  Dynamics of Circumstellar Disks , 1998, astro-ph/9802191.

[10]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[11]  Vortices in Protoplanetary Disks , 1999, astro-ph/9901384.

[12]  E. Becklin,et al.  Substantial reservoirs of molecular hydrogen in the debris disks around young stars , 2001, Nature.

[13]  P. Cassen,et al.  The Effects of Thermal Energetics on Three-dimensional Hydrodynamic Instabilities in Massive Protostellar Disks , 1998 .

[14]  Charles F. Gammie,et al.  Layered Accretion in T Tauri Disks , 1996 .

[15]  Kristen Menou,et al.  On the Origin of Episodic Accretion in Dwarf Novae , 1997, astro-ph/9710250.

[16]  The ages of pre-main-sequence stars , 1999, astro-ph/9907439.

[17]  W. Ward Protoplanet Migration by Nebula Tides , 1997 .

[18]  P. Bodenheimer,et al.  Nonaxisymmetric evolution in protostellar disks , 1994 .

[19]  J.C.B. Papaloizou,et al.  On the Dynamical Foundations of α Disks , 1999 .

[20]  L. Hartmann,et al.  Accretion and the Evolution of T Tauri Disks , 1998 .

[21]  S. Basu Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores , 1998, astro-ph/9808140.

[22]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[23]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[24]  Stephen J. Mackwell,et al.  37th Annual Lunar and Planetary Science Conference , 2003 .

[25]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[26]  S. Eikenberry,et al.  ROSAT Timing of the LMC Pulsar 0540–69 , 1997, astro-ph/9707325.

[27]  Ryoji Matsumoto,et al.  Magnetic viscosity by localized shear flow instability in magnetized accretion disks , 1995 .

[28]  D. Lin,et al.  Evolution of FU Orionis Outbursts in Protostellar Disks , 1999 .

[29]  CRITICAL PROTOPLANETARY CORE MASSES IN PROTOPLANETARY DISKS AND THE FORMATION OF SHORT-PERIOD GIANT PLANETS , 1999, astro-ph/9903310.

[30]  Robert F. Stein,et al.  Dynamo-generated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow , 1995 .

[31]  S. Tremaine,et al.  The excitation of density waves at the Lindblad and corotation resonances by an external potential. , 1979 .

[32]  P. Goldreich,et al.  The formation of planetesimals. , 1973 .

[33]  James M. Stone,et al.  Three-dimensional magnetohydrodynamical simulations of vertically stratified accretion disks , 1996 .

[34]  S. Beckwith,et al.  Millimeter-wave continuum measurements of young stars , 1995 .

[35]  L. Hartmann,et al.  Disk Accretion Rates for T Tauri Stars , 1998 .

[36]  T. Stepinski New Approach to Diagnosing Properties of Protoplanetary Disks , 1998 .

[37]  Th. Henning,et al.  The Structure and Appearance of Protostellar Accretion Disks: Limits on Disk Flaring , 1997 .

[38]  J. Papaloizou,et al.  Orbital eccentricity growth through disc-companion tidal interaction , 2001 .

[39]  J. Bally,et al.  Giant Herbig-Haro Flows , 1997 .

[40]  D. Lin,et al.  The formation and initial evolution of protostellar disks , 1990 .

[41]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[42]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .

[43]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[44]  L. Hartmann,et al.  The FU Orionis Phenomenon , 1996 .

[45]  S. Miyama,et al.  Magnetorotational Instability in Protoplanetary Disks. II. Ionization State and Unstable Regions , 2000, astro-ph/0005464.