MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC) is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matching image pairs with scale changes up to a factor of 7. Moreover, MOCC is much faster in comparison with the state-of-the-art matching methods. Experimental results on real images show the robustness and effectiveness of the proposed method.

[1]  James L. Crowley,et al.  A Representation for Shape Based on Peaks and Ridges in the Difference of Low-Pass Transform , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[3]  N. Hanaizumi,et al.  An automated method for registration of satellite remote sensing images , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[4]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[5]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .

[6]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[7]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[8]  Richard Szeliski,et al.  Multi-image matching using multi-scale oriented patches , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[11]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[12]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[13]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[14]  Nicu Sebe,et al.  Evaluation of Salient Point Techniques , 2002, CIVR.

[15]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[16]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[17]  Lucas J. van Vliet,et al.  Recursive implementation of the Gaussian filter , 1995, Signal Process..

[18]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[19]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[20]  Hans P. Morevec Towards automatic visual obstacle avoidance , 1977, IJCAI 1977.

[21]  Tom Drummond,et al.  Faster and Better: A Machine Learning Approach to Corner Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[23]  Rikard Berthilsson Affine correlation , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[24]  Hans P. Moravec Towards Automatic Visual Obstacle Avoidance , 1977, IJCAI.

[25]  Cordelia Schmid,et al.  Indexing Based on Scale Invariant Interest Points , 2001, ICCV.

[26]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[27]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[28]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Cordelia Schmid,et al.  Scale-invariant shape features for recognition of object categories , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[30]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[31]  Cordelia Schmid,et al.  Image matching with scale adjustment , 2004, Comput. Vis. Image Underst..

[32]  Wen Gao,et al.  Image Matching by Multiscale Oriented Corner Correlation , 2006, ACCV.

[33]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[34]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[35]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .