Modelling Structure‐Activity Relationships

[1]  Harpreet S. Chadha,et al.  Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. , 1994, Journal of pharmaceutical sciences.

[2]  R. Venkataraghavan,et al.  Atom pairs as molecular features in structure-activity studies: definition and applications , 1985, J. Chem. Inf. Comput. Sci..

[3]  Paola Gramatica,et al.  SD-modelling and Prediction by WHIM Descriptors. Part 5. Theory Development and Chemical Meaning of WHIM Descriptors , 1997 .

[4]  R E Wilcox,et al.  CoMFA-based prediction of agonist affinities at recombinant D1 vs D2 dopamine receptors. , 1998, Journal of medicinal chemistry.

[5]  G Vriend,et al.  The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. , 1986, Science.

[6]  G. Cruciani,et al.  Generating Optimal Linear PLS Estimations (GOLPE): An Advanced Chemometric Tool for Handling 3D‐QSAR Problems , 1993 .

[7]  D. E. Clark,et al.  Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. , 1999, Journal of pharmaceutical sciences.

[8]  Andrea Zaliani,et al.  Global 3D-QSAR methods: MS-WHIM and autocorrelation , 2000, J. Comput. Aided Mol. Des..

[9]  Allan M. Ferguson,et al.  EVA: A new theoretically based molecular descriptor for use in QSAR/QSPR analysis , 1997, J. Comput. Aided Mol. Des..

[10]  J. Mason,et al.  New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures. , 1999, Journal of medicinal chemistry.

[11]  G Klebe,et al.  On the prediction of binding properties of drug molecules by comparative molecular field analysis. , 1993, Journal of medicinal chemistry.

[12]  Peter Willett,et al.  Effect of Parameter Variations on the Effectiveness of HQSAR Analyses , 1999 .

[13]  Sung Jin Cho,et al.  Rational Combinatorial Library Design. 2. Rational Design of Targeted Combinatorial Peptide Libraries Using Chemical Similarity Probe and the Inverse QSAR Approaches , 1998, J. Chem. Inf. Comput. Sci..

[14]  Malcolm J. McGregor,et al.  Pharmacophore Fingerprinting. 1. Application to QSAR and Focused Library Design , 1999, J. Chem. Inf. Comput. Sci..

[15]  S. Free,et al.  A MATHEMATICAL CONTRIBUTION TO STRUCTURE-ACTIVITY STUDIES. , 1964, Journal of medicinal chemistry.

[16]  B. Kowalski,et al.  Pattern recognition. II. Linear and nonlinear methods for displaying chemical data , 1973 .

[17]  Ramaswamy Nilakantan,et al.  Topological torsion: a new molecular descriptor for SAR applications. Comparison with other descriptors , 1987, J. Chem. Inf. Comput. Sci..

[18]  A. Good,et al.  New methodology for profiling combinatorial libraries and screening sets: cleaning up the design process with HARPick. , 1997, Journal of medicinal chemistry.

[19]  D. Rogers,et al.  Receptor surface models. 2. Application to quantitative structure-activity relationships studies. , 1995, Journal of medicinal chemistry.

[20]  S. Ekins,et al.  Three-dimensional quantitative structure activity relationship analyses of substrates for CYP2B6. , 1999, The Journal of pharmacology and experimental therapeutics.

[21]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[22]  J. Topliss,et al.  Chance factors in studies of quantitative structure-activity relationships. , 1979, Journal of medicinal chemistry.

[23]  Paul Labute,et al.  Binary Quantitative Structure-Activity Relationship (QSAR) Analysis of Estrogen Receptor Ligands , 1999, J. Chem. Inf. Comput. Sci..

[24]  Antti Poso,et al.  Comparative Molecular Field Analysis of Compounds with CYP2A5 Binding Affinity , 1995 .

[25]  Andrea Zaliani,et al.  MS-WHIM Scores for Amino Acids: A New 3D-Description for Peptide QSAR and QSPR Studies , 1999, J. Chem. Inf. Comput. Sci..

[26]  Peter W. Kenny,et al.  Prediction of hydrogen bond basicity from computed molecular electrostatic properties: implications for comparative molecular field analysis , 1994 .

[27]  Yvonne C. Martin,et al.  A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists , 1993, J. Comput. Aided Mol. Des..

[28]  Thuy Dao,et al.  Comparative Spectra Analysis (CoSA): Spectra as Three-Dimensional Molecular Descriptors for the Prediction of Biological Activities , 1999, J. Chem. Inf. Comput. Sci..

[29]  Lemont B. Kier,et al.  Electrotopological State Indices for Atom Types: A Novel Combination of Electronic, Topological, and Valence State Information , 1995, J. Chem. Inf. Comput. Sci..

[30]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[31]  Marina Lasagni,et al.  New molecular descriptors for 2D and 3D structures. Theory , 1994 .

[32]  Xin Chen,et al.  Recursive Partitioning Analysis of a Large Structure-Activity Data Set Using Three-Dimensional Descriptors1 , 1998, J. Chem. Inf. Comput. Sci..

[33]  H Matter,et al.  Affinity and selectivity of matrix metalloproteinase inhibitors: a chemometrical study from the perspective of ligands and proteins. , 1999, Journal of medicinal chemistry.

[34]  D. E. Clark Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. , 1999, Journal of pharmaceutical sciences.

[35]  Robert P. Sheridan,et al.  Chemical Similarity Using Geometric Atom Pair Descriptors , 1996, J. Chem. Inf. Comput. Sci..

[36]  Peter Willett,et al.  Evaluation of a novel infrared range vibration-based descriptor (EVA) for QSAR studies. 1. General application , 1997, J. Comput. Aided Mol. Des..

[37]  R. Cramer,et al.  Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. , 1988, Journal of the American Chemical Society.

[38]  Peter A. Hunt QSAR using 2D descriptors and TRIPOS' SIMCA , 1999, J. Comput. Aided Mol. Des..

[39]  Roberto Todeschini,et al.  MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids , 1997, J. Comput. Aided Mol. Des..

[40]  T. Fujita,et al.  Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters. , 1971, Journal of medicinal chemistry.

[41]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[42]  Romano T. Kroemer,et al.  Replacement of steric 6–12 potential-derived interaction energies by atom-based indicator variables in CoMFA leads to models of higher consistency , 1995, J. Comput. Aided Mol. Des..

[43]  W. Richards,et al.  Self-organizing molecular field analysis: a tool for structure-activity studies. , 1999, Journal of medicinal chemistry.

[44]  Svante Wold,et al.  Multivariate Parametrization of 55 Coded and Non‐Coded Amino Acids , 1989 .

[45]  Xin Chen,et al.  Automated Pharmacophore Identification for Large Chemical Data Sets1 , 1999, J. Chem. Inf. Comput. Sci..

[46]  J. Murray,et al.  Correlations between the solvent hydrogen-bond-donating parameter .alpha. and the calculated molecular surface electrostatic potential , 1991 .

[47]  M Pastor,et al.  GRID/GOLPE 3D quantitative structure-activity relationship study on a set of benzamides and naphthamides, with affinity for the dopamine D3 receptor subtype. , 1997, Journal of medicinal chemistry.

[48]  B D Silverman,et al.  Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. , 1996, Journal of medicinal chemistry.

[49]  C. Hansch,et al.  p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure , 1964 .

[50]  H. Kubinyi QSAR: Hansch Analysis and Related Approaches: Kubinyi/QSAR , 1993 .

[51]  Peter Ertl,et al.  Simple Quantum Chemical Parameters as an Alternative to the Hammett Sigma Constants in QSAR Studies , 1997 .

[52]  M. Hahn Receptor surface models. 1. Definition and construction. , 1995, Journal of medicinal chemistry.

[53]  G. Cruciani,et al.  Comparative molecular field analysis using GRID force-field and GOLPE variable selection methods in a study of inhibitors of glycogen phosphorylase b. , 1994, Journal of medicinal chemistry.

[54]  Han van de Waterbeemd,et al.  Pattern recognition study of QSAR substituent descriptors , 1989, J. Comput. Aided Mol. Des..

[55]  Robert P. Sheridan,et al.  Chemical Similarity Using Physiochemical Property Descriptors , 1996, J. Chem. Inf. Comput. Sci..

[56]  Klaus-Jürgen Schaper FREE-WILSON-TYPE ANALYSIS OF NON-ADDITIVE SUBSTITUENT EFFECTS ON THPB DOPAMINE RECEPTOR AFFINITY USING ARTIFICIAL NEURAL NETWORKS , 1999 .

[57]  J. Gasteiger,et al.  Autocorrelation of Molecular Surface Properties for Modeling Corticosteroid Binding Globulin and Cytosolic Ah Receptor Activity by Neural Networks , 1995 .

[58]  H. W. Hamilton,et al.  Synthesis of xanthines as adenosine antagonists, a practical quantitative structure-activity relationship application. , 1985, Journal of medicinal chemistry.

[59]  G. Folkers,et al.  Quantitative Structure‐Activity Relationships of Phenyltropanes as Inhibitors of Three Monoamine Transporters: Classical and CoMFA studies , 1999 .

[60]  D. J. Livingstone Multivariate Data Display Using Neural Networks , 1996 .

[61]  M G Rossmann,et al.  Structural analysis of antiviral agents that interact with the capsid of human rhinoviruses , 1990, Proteins.

[62]  Shiyin Yee,et al.  In Vitro Permeability Across Caco-2 Cells (Colonic) Can Predict In Vivo (Small Intestinal) Absorption in Man—Fact or Myth , 1997, Pharmaceutical Research.

[63]  Sung-Sau So,et al.  A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors , 1999, J. Comput. Aided Mol. Des..

[64]  Paola Gramatica,et al.  Weighted holistic invariant molecular descriptors. Part 2. Theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons , 1995 .

[65]  G Klebe,et al.  Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. , 1999, Journal of medicinal chemistry.

[66]  M Pastor,et al.  Smart region definition: a new way to improve the predictive ability and interpretability of three-dimensional quantitative structure-activity relationships. , 1997, Journal of medicinal chemistry.