Nonlinear formation of holographic images of obscurations in laser beams.

Computer models are used to simulate the nonlinear formation of images of obscurations in laser beams. The predictions of the model are found to be in good agreement with measurements conducted in the nonlinear regime corresponding to a typical solid-state laser operation. In this regime, peak-to-mean fluence ratios large enough to induce damage in optical components are observed. The amplitude of the images and their location along the propagation axis are accurately predicted by the simulations. This indicates that the model is a reliable design tool for specifying component staging and optical specifications to avoid optical damage by this mechanism.