On the RR Lyrae Stars in Globulars. V. The Complete Near-infrared (JHKs) Census of ω Centauri RR Lyrae Variables

We present a new complete Near-Infrared (NIR, $JHK_s$) census of RR Lyrae stars (RRLs) in the globular $\omega$ Cen (NGC 5139). We collected 15,472 $JHK_s$ images with 4-8m class telescopes over 15 years (2000-2015) covering a sky area around the cluster center of 60x34 arcmin$^2$. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with ten to sixty measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 ($J$), 176 ($H$) and 174 ($K_s$) RRLs. These data were supplemented with single-epoch $JK_s$ magnitudes from VHS and with single-epoch $H$ magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide $JHK_s$ magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed--mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P>0.7 days) fundamental RRLs. Using predicted Period-Luminosity-Metallicity relations, we derive a true distance modulus of 13.674$\pm$0.008$\pm$0.038 mag (statistical error and standard deviation of the median)---based on spectroscopic iron abundances---and of 13.698$\pm$0.004$\pm$0.048 mag---based on photometric iron abundances. We also found evidence of possible systematics at the 5-10% level in the zero-point of the PLs based on the five calibrating RRLs whose parallaxes had been determined with HST

European Southern Observatory | Chicago | Chile | Canada | Il | Santiago | Heidelberg | Napoli | University of Chicago | G. Fiorentino | E. Marchetti | Department of Physics | A. Pietrinferni | Facultad de Ciencias Exactas | USA | Germany | CA | M. Castellani | IL | The University of Tokyo | M. Nonino | Canada. | Astronomy | Institute of Astronomy | E. Di Carlo | Italy | M. Dall'Ora | S. Marinoni | L. Inno | B. F. Madore | Japan | Pasadena | Tenerife | La Laguna | Pisa | E. Valenti | INAF | L. Pulone | Roma | M. Fabrizio | INFN | Huntsville | Garching bei Munchen | P. B. Stetson | School of Science | Ia | G. Bono | Spain | R. Buonanno | G. Iannicola | A. R. Walker | A. Calamida | S. E. Persson | D. Minniti | Ames | E. Tognelli | R. L. Beaton | A. M. Piersimoni | H Germany | Victoria | M. Nonino | R. Beaton | D. Physics | Usa | Spain. | Instituto de Astrof'isica de Canarias | La Laguna | -INAF | Italy. | T. U. O. Tokyo | Japan. | I. O. Astronomy | National Optical Astronomy Observatory | U. Chicago | Chicago. | A. Walker | B. Madore | A. Monson | E. Observatory | A. Calamida | Al. | School of Materials Science | M. Marconi | E. Marchetti | R. Stellingwerf | W. Freedman | D. Observatory | G. Fiorentino | G. Bono | M. Dall’ora | I. Ferraro | G. Iannicola | P. Stetson | Infn | M. F. Astronomy | D. Minniti | Trieste | Chile. | Ca | L. Pulone | V. Braga | A. Pietrinferni | R. Buonanno | M. Castellani | P. Marrese | S. Marinoni | A. Piersimoni | M. Fabrizio | C. T. I. Observatory | I. S. University | L. Inno | P. U. D. Chile | M. Marengo | Bologna | U. Pisa | I. Roma | E. Valenti | Dep. de Fisica | T. Science | M. Catone | I. Bologna | Department of Theoretical Astrophysics | G. B. Munchen | W. L. Freedman | M. Marconi | Universita di Pisa | Max Planck Institute for Astronomy | M. Monelli | I. Ferraro | L. Serena | Department of Astrophysics | N. Matsunaga | M. Marengo | Universidad Andres Bello | I. A. D. Capodimonte | V. Observatory | Universita' di Roma Tor Vergata | E. Tognelli | J. Neeley | N. Matsunaga | Cerro Tololo Inter-American Observatory | Vatican Observatory | NRC-Herzberg | AZ Tucson | V. F. Braga | D. Magurno | Pontificia Universidad Catolica de Chile | Dominion Astrophysical Observatory | Universita di Roma Tor Vergata | INAF-Osservatorio Astronomico di Capodimonte | INAF-Osservatorio Astronomico di Roma | Iowa State University | U. A. Bello | The Observatories of the Carnegie Institution for Science | Az Tucson | M. Monelli | J. Neeley | Monte Porzio Catone | IA | Teramo | Kiso Observatory | AL | La Serena | P. Marrese | INAF-Osservatorio Astronomico di Bologna | Departamento de Fisica | Stellingwerf Consulting | A. J. Monson | P. Prada-Moroni | R. Stellingwerf | M. Zoccali Instituto Milenio de Astrofisica | SSDC | INAF-Osservatorio Astronomico d'Abruzzo | Department of Astronomy Astrophysics | Kiso-machi | Vatican City State | Osservatorio Astronoico di Trieste | Sezione di Pisa | Dipartimento di FisicaEnrico Fermi | Instituto de Astrofisica | D. Magurno | E. D. Carlo | P. Pradamoroni | M. I. D. Astrofisica | F. D. C. Exactas | Ssdc | K. Observatory | S. Pisa | Stellingwerf Consulting | Instituto Milenio de Astrofisica | D. Physics | I. A. D. Bologna | P. U. C. D. Chile | I. A. d'Abruzzo

[1]  M. Feast Long period variables in globular clusters and in the general field , 1965 .

[2]  T. S. van Albada,et al.  On the Two Oosterhoff Groups of Globular Clusters , 1973 .

[3]  C. Cannon The Multi-Dimensional Structure of the Photosphere and Low Chromosphere of the Sun. , 1974 .

[4]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[5]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[6]  J. Elias,et al.  Comparison of the MT. Stromlo/AAO and Caltech/Tololo infrared photometric systems. , 1983 .

[7]  D. Allen,et al.  The AAO JHKL' photometric standards , 1983 .

[8]  I. Skillen,et al.  Globular cluster distances from the RR Lyrae log(period) - infrared magnitude relation. , 1990 .

[9]  R. Stellingwerf,et al.  Cepheid convective models , 1993 .

[10]  W. Freedman,et al.  Leo I - The youngest Milky Way dwarf spheroidal galaxy? , 1993 .

[11]  J. Nemec,et al.  Period-luminosity-metallicity relations, pulsation modes, absolute magnitudes, and distances for population 2 variable stars , 1994 .

[12]  M. Marconi,et al.  RR Lyrae Variable Stars: Pulsational Constraints Relevant to the Oosterhoff Controversy , 1995, astro-ph/9506001.

[13]  Bruce W. Carney,et al.  TEMPLATE K LIGHT CURVES FOR RR LYRAE STARS , 1996 .

[14]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[15]  G. Bono,et al.  Nonlinear investigation of the pulsational properties of RR Lyrae variables , 1997 .

[16]  D. H. McNamara,et al.  LUMINOSITIES OF SX PHOENICIS, LARGE-AMPLITUDE DELTA SCUTI, AND RR LYRAE STARS , 1997 .

[17]  F. Caputo Evolution of Population II stars , 1998 .

[18]  Canada.,et al.  Period Changes in ω Centauri RR Lyrae Stars , 2000, astro-ph/0010005.

[19]  Soo-Chang Rey,et al.  CCD Photometry of the Globular Cluster ω Centauri. I. Metallicity of RR Lyrae Stars from Caby Photometry , 2000 .

[20]  D. H. Mcnamara,et al.  The Identification of Pulsation Modes of High‐Amplitude δ Scuti Stars in ω Centauri and the Carina Galaxy , 2000 .

[21]  J. Rowe,et al.  Variable Stars in Galactic Globular Clusters , 2001, astro-ph/0108024.

[22]  E. Pancino The Multiple Stellar Populations in Omega Centauri , 2001, astro-ph/0112015.

[23]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[24]  B. Paczynski,et al.  Cluster AgeS Experiment: The Age and Distance of the Globular Cluster ω Centauri Determined from Observations of the Eclipsing Binary OGLEGC 17 , 2000, astro-ph/0012493.

[25]  S. Degl'Innocenti,et al.  A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars , 2003 .

[26]  Giuseppe Bono RR Lyrae Distance Scale: Theory and Observations , 2003 .

[27]  Danielle Alloin,et al.  Stellar candles for the extragalactic distance scale , 2003 .

[28]  Cluster AgeS ExperimentCatalog of variable stars in the globular cluster omega Centauri , 2004, astro-ph/0406456.

[29]  S. E. Persson,et al.  New Cepheid Period-Luminosity Relations for the Large Magellanic Cloud: 92 Near-Infrared Light Curves , 2004 .

[30]  V. Ripepi,et al.  The distance to the LMC cluster Reticulum from the K-band Period-Luminosity-Metallicity relation of RR Lyrae stars , 2004 .

[31]  F. Ferraro,et al.  IR photometric properties of Red Giants in ω Cen , 2004, astro-ph/0402100.

[32]  M. Bellazzini,et al.  The calibration of the RGB Tip as a Standard Candle Extension to Near Infrared colors and higher metallicity , 2004 .

[33]  M. Catelan,et al.  The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration , 2004, astro-ph/0406067.

[34]  W. Gieren,et al.  Mean JHK Magnitudes of Fundamental-Mode Cepheids from Single-Epoch Observations , 2005, astro-ph/0503598.

[35]  M. Nonino,et al.  Reddening Distribution across the Center of the Globular Cluster ω Centauri , 2005, astro-ph/0510343.

[36]  S. Djorgovski,et al.  Hubble Space Telescope WFPC2 Color-Magnitude Diagrams for Globular Clusters in M31 , 2005, astro-ph/0502180.

[37]  M. Catelán,et al.  New Metallicities of RR Lyrae Stars in ω Centauri: Evidence for a Non-He-enhanced Metal-intermediate Population , 2006, astro-ph/0602055.

[38]  E. Valenti,et al.  The RR Lyrae period–K-luminosity relation for globular clusters: an observational approach★ , 2006, astro-ph/0608397.

[39]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[40]  Toshihiko Tanabe,et al.  The period–luminosity relation for type II Cepheids in globular clusters , 2006, astro-ph/0606609.

[41]  The dynamical distance and intrinsic structure of the globular cluster ω Centauri , 2005, astro-ph/0509228.

[42]  M. Marconi,et al.  Synthetic properties of bright metal-poor variables I. "Anomalous" Cepheids , 2006, astro-ph/0609029.

[43]  M. Castellani,et al.  A Pulsational Distance to ω Centauri Based on Near-Infrared Period-Luminosity Relations of RR Lyrae Stars , 2006, astro-ph/0608052.

[44]  A Deep Wide-Field Variable Star Catalog of ω Centauri , 2006, astro-ph/0610704.

[45]  J. B. Orissova,et al.  NEW METALLICITIES OF RR LYRAE STARS INω CENTAURI: EVIDENCE FOR A NON HE-ENHANCED METAL-INTERMEDIATE POPULATION , 2006 .

[46]  The Clusters Ages Experiment (CASE). I. V209 ω Cen: An Eclipsing Post-Common-Envelope Binary in the Globular Cluster ω Cen , 2007, 0704.3507.

[47]  V. M. Larionov,et al.  The infrared JHK light curves of RR Lyr , 2007, 0712.0578.

[48]  G. Clementini,et al.  A δ Scuti Distance to the Large Magellanic Cloud , 2007, astro-ph/0702107.

[49]  C. Vuerli,et al.  Star Counts in the Globular Cluster ω Centauri. I. Bright Stellar Components , 2007, astro-ph/0703401.

[50]  E. Marchetti,et al.  On the White Dwarf Cooling Sequence of the Globular Cluster ω Centauri , 2007, 0712.0603.

[51]  M. Nonino,et al.  On the Relative Distances of ω Centauri and 47 Tucanae , 2008, 0809.0863.

[52]  J. Anderson,et al.  Radial distribution of the multiple stellar populations in ω Centauri , 2009, 0909.4785.

[53]  Roeland P. van der Marel,et al.  NEW LIMITS ON AN INTERMEDIATE-MASS BLACK HOLE IN OMEGA CENTAURI. I. HUBBLE SPACE TELESCOPE PHOTOMETRY AND PROPER MOTIONS , 2009, 0905.0627.

[54]  J. Jurcsik,et al.  Long-term photometric monitoring of Messier 5 variables – II. Blazhko stars , 2010, 1010.1119.

[55]  C. Pilachowski,et al.  CHEMICAL ABUNDANCES FOR 855 GIANTS IN THE GLOBULAR CLUSTER OMEGA CENTAURI (NGC 5139) , 2010, 1008.2232.

[56]  Nicole Nesvacil,et al.  DISTANCE SCALE ZERO POINTS FROM GALACTIC RR LYRAE STAR PARALLAXES , 2011, 1109.5631.

[57]  D. Mcnamara DELTA SCUTI, SX PHOENICIS, AND RR LYRAE STARS IN GALAXIES AND GLOBULAR CLUSTERS , 2011 .

[58]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[59]  Stephen A. Smee,et al.  FourStar: The Near-Infrared Imager for the 6.5 m Baade Telescope at Las Campanas Observatory , 2013 .

[60]  M. Catelán,et al.  THE RR LYRAE VARIABLES AND HORIZONTAL BRANCH OF NGC 6656 (M22), , 2013, 1308.6573.

[61]  M. Moretti,et al.  The VMC survey - VIII : First results for anomalous Cepheids , 2013, 1310.5967.

[62]  Luca Casagrande,et al.  THE AGES OF 55 GLOBULAR CLUSTERS AS DETERMINED USING AN IMPROVED METHOD ALONG WITH COLOR–MAGNITUDE DIAGRAM CONSTRAINTS, AND THEIR IMPLICATIONS FOR BROADER ISSUES , 2013, 1308.2257.

[63]  Wendy L. Freedman,et al.  A PRELIMINARY CALIBRATION OF THE RR LYRAE PERIOD–LUMINOSITY RELATION AT MID-INFRARED WAVELENGTHS: WISE DATA , 2013, 1308.3160.

[64]  Tokyo,et al.  New NIR light-curve templates for classical Cepheids , 2014, 1410.5460.

[65]  R. Poleski,et al.  Over 38000 RR Lyrae Stars in the OGLE Galactic Bulge Fields , 2014, 1410.1542.

[66]  A. Robin,et al.  Searching for tidal tails around ω Centauri using RR Lyrae stars , 2014, 1411.3004.

[67]  Carnegie Observatories,et al.  ON THE DISTANCE OF THE GLOBULAR CLUSTER M4 (NGC 6121) USING RR LYRAE STARS. I. OPTICAL AND NEAR-INFRARED PERIOD–LUMINOSITY AND PERIOD–WESENHEIT RELATIONS , 2014, 1411.6826.

[68]  G. Fiorentino,et al.  THE CARINA PROJECT. IX. ON HYDROGEN AND HELIUM BURNING VARIABLES , 2015, 1509.02687.

[69]  R. Poleski,et al.  The OGLE Collection of Variable Stars. Anomalous Cepheids in the Magellanic Clouds , 2015, 1508.00907.

[70]  A. Pietrinferni,et al.  ON A NEW THEORETICAL FRAMEWORK FOR RR LYRAE STARS. I. THE METALLICITY DEPENDENCE , 2015, 1505.02531.

[71]  G. Fiorentino,et al.  Variable stars in Local Group Galaxies – I. Tracing the early chemical enrichment and radial gradients in the Sculptor dSph with RR Lyrae stars , 2015, 1508.06942.

[72]  M. Dall'Ora,et al.  ON THE DISTANCE OF THE GLOBULAR CLUSTER M4 (NGC 6121) USING RR LYRAE STARS. II. MID-INFRARED PERIOD–LUMINOSITY RELATIONS , 2015, 1505.07858.

[73]  M. Catelán,et al.  VARIABLE STARS IN THE VVV GLOBULAR CLUSTERS. I. 2MASS-GC 02 AND TERZAN 10 , 2014, 1411.1696.

[74]  L. Kriskovics,et al.  OVERTONE AND MULTI-MODE RR LYRAE STARS IN THE GLOBULAR CLUSTER M3 , 2015, 1504.06215.

[75]  Canada.,et al.  An Updated Census of RR~Lyrae Stars in the Globular Cluster $\omega$~Centauri (NGC\,5139) , 2015, 1501.02286.

[76]  G. Fiorentino,et al.  ON THE RR LYRAE STARS IN GLOBULARS. IV. ω CENTAURI OPTICAL UBVRI PHOTOMETRY , 2016, The Astronomical Journal.

[77]  G. Fiorentino,et al.  THE PANCHROMATIC VIEW OF THE MAGELLANIC CLOUDS FROM CLASSICAL CEPHEIDS. I. DISTANCE, REDDENING, AND GEOMETRY OF THE LARGE MAGELLANIC CLOUD DISK , 2016, 1609.03554.

[78]  K. Ulaczyk,et al.  The OGLE Collection of Variable Stars. Over 45 000 RR Lyrae Stars in the Magellanic System , 2016, 1606.02727.

[79]  Erika K. Carlson,et al.  THE CARNEGIE-CHICAGO HUBBLE PROGRAM. I. AN INDEPENDENT APPROACH TO THE EXTRAGALACTIC DISTANCE SCALE USING ONLY POPULATION II DISTANCE INDICATORS , 2016, 1604.01788.

[80]  G. Fiorentino,et al.  Variable stars in Local Group Galaxies - II. Sculptor dSph , 2016, 1607.08518.

[81]  M. Skarka,et al.  Blazhko effect in the Galactic bulge fundamental mode RR Lyrae stars – I. Incidence rate and differences between modulated and non-modulated stars , 2017, 1701.00782.

[82]  M. Catelán,et al.  Near-IR period-luminosity relations for pulsating stars in $\omega$ Centauri (NGC 5139) , 2017, 1704.03031.

[83]  Massimo Marengo,et al.  On a New Theoretical Framework for RR Lyrae Stars. II. Mid-infrared Period–Luminosity–Metallicity Relations , 2017, 1705.01970.

[84]  Wendy L. Freedman,et al.  Standard Galactic Field RR Lyrae. I. Optical to Mid-infrared Phased Photometry , 2017, 1703.01520.

[85]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[86]  N. N. Kireeva,et al.  General catalogue of variable stars: Version GCVS 5.1 , 2017 .

[87]  Harinder P. Singh,et al.  Large Magellanic Cloud Near-infrared Synoptic Survey. IV. Leavitt Laws for Type II Cepheid Variables , 2017, 1702.00967.

[88]  E. K. Grebel,et al.  Blazhko modulation in the infrared , 2018, 1801.03436.