Asymptotic estimates for best and stepwise approximation of convex bodies II

We consider approximations of a smooth convex body by inscribed and circumscribed convex polytopes as the number of vertices, resp. facets tends to infinity. The measure of deviation used is the dierence of the mean width of the convex body and the approximating polytopes. The following results are obtained. (i) An asymptotic formula for best approximation. (ii) Upper and lower estimates for step- by-step approximation in terms of the so-called dispersion. (iii) For a sequence of best approximating inscribed polytopes the sequence of vertex sets is uniformly distributed in the boundary of the convex body where the density is specified explicitly.

[1]  M. Ludwig Asymptotic approximation of convex curves , 1994 .

[2]  Shlomo Reisner,et al.  Volume approximation of convex bodies by polytopes - a constructive method , 1994 .

[3]  P. Gruber,et al.  Approximation by Convex Polytopes , 1994 .

[4]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[5]  P. Gruber Asymptotic estimates for best and stepwise approximation of convex bodies I , 1993 .

[6]  P. Gruber Aspects of Approximation of Convex Bodies , 1993 .

[7]  G. Tóth,et al.  Packing and Covering with Convex Sets , 1993 .

[8]  H. Groemer,et al.  Stability of Geometric Inequalities , 1993 .

[9]  I. Bárány Random polytopes in smooth convex bodies , 1992 .

[10]  C. Schütt The convex floating body and polyhedral approximation , 1991 .

[11]  Peter M. Gruber,et al.  Volume Approximation of Convex Bodies by Circumscribed Polytopes , 1990, Applied Geometry And Discrete Mathematics.

[12]  On the mean width of random polytopes , 1989 .

[13]  On the mean width of random polytopes , 1989 .

[14]  P. Gruber,et al.  Volume approximation of convex bodies by inscribed polytopes , 1988 .

[15]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[16]  APPROXIMATION OF LENGTH OF CURVES IN RIEMANNIAN MANIFOLDS BY GEODESIC POLYGONS , 1986 .

[17]  C. Petty,et al.  AFFINE ISOPERIMETRIC PROBLEMS , 1985 .

[18]  E. Hlawka,et al.  The theory of uniform distribution , 1984 .

[19]  P. Gruber Approximation of convex bodies , 1983 .

[20]  P. Gruber,et al.  Approximation of convex bodies by polytopes , 1982 .

[21]  R. Schneider Zur optimalen Approximation konvexer Hyperflächen durch Polyeder , 1981 .

[22]  Rolf Schneider,et al.  Random polytopes in a convex body , 1980 .

[23]  A. Gleason A Curvature Formula , 1979 .

[24]  R. A. Vitale,et al.  Polygonal approxi-mation of plane convex bodies , 1975 .

[25]  H. Groemer,et al.  On the mean value of the volume of a random polytope in a convex set , 1974 .

[26]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[27]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[28]  A. Macbeath An extremal property of the hypersphere , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  R. Kershner The Number of Circles Covering a Set , 1939 .

[30]  W. Blaschke Vorlesungen über Differentialgeometrie , 1912 .