The endoplasmic reticulum kinase PERK interacts with the oxidoreductase ERO1 to metabolically adapt mitochondria.

[1]  Benjamin Gottschalk,et al.  MFN2 mediates ER-mitochondrial coupling during ER stress through specialized stable contact sites , 2022, Frontiers in Cell and Developmental Biology.

[2]  N. Borgese,et al.  ERO1 alpha deficiency impairs angiogenesis by increasing N-glycosylation of a proangiogenic VEGFA , 2022, Redox biology.

[3]  R. Sitia,et al.  Transfer of H2O2 from Mitochondria to the endoplasmic reticulum via Aquaporin-11 , 2022, Redox biology.

[4]  Zhenbo Cao,et al.  Activation of the UPR sensor ATF6α is regulated by its redox-dependent dimerization and ER retention by ERp18 , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Brini,et al.  Quantification of organelle contact sites by split-GFP-based contact site sensors (SPLICS) in living cells , 2021, Nature Protocols.

[6]  P. Várnai,et al.  Oxidative bursts of single mitochondria mediate retrograde signaling toward the ER. , 2021, Molecular cell.

[7]  Ariel D. Quiroga,et al.  Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. , 2021, Cell reports.

[8]  J. Vance Inter-organelle membrane contact sites: implications for lipid metabolism , 2020, Biology Direct.

[9]  A. Shah,et al.  Nox4 regulates InsP3 receptor‐dependent Ca2+ release into mitochondria to promote cell survival , 2020, The EMBO journal.

[10]  P. Mercier,et al.  The ER chaperone calnexin controls mitochondrial positioning and respiration , 2020, Science Signaling.

[11]  Devin K. Schweppe,et al.  A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging , 2020, Cell.

[12]  P. Pinton,et al.  Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane , 2019, Redox biology.

[13]  K. Mikoshiba,et al.  IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer , 2019, Nature Communications.

[14]  Jan Dudek,et al.  Redox signals at the ER–mitochondria interface control melanoma progression , 2019, The EMBO journal.

[15]  P. Puigserver,et al.  ER and Nutrient Stress Promote Assembly of Respiratory Chain Supercomplexes through the PERK-eIF2α Axis. , 2019, Molecular cell.

[16]  G. Kroemer,et al.  Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics , 2019, Nature Cell Biology.

[17]  W. Graier,et al.  The enigmatic ATP supply of the endoplasmic reticulum , 2018, Biological reviews of the Cambridge Philosophical Society.

[18]  R. L. Wiseman,et al.  The PERK Arm of the Unfolded Protein Response Regulates Mitochondrial Morphology during Acute Endoplasmic Reticulum Stress , 2018, Cell reports.

[19]  L. Scorrano,et al.  SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition , 2017, Cell Death & Differentiation.

[20]  F. Förster,et al.  An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases , 2017, Front. Physiol..

[21]  P. Chaminade,et al.  Optimization of normal phase chromatographic conditions for lipid analysis and comparison of associated detection techniques. , 2017, Journal of chromatography. A.

[22]  P. Kranz,et al.  PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR) , 2017, Cell Death & Disease.

[23]  G. Molenberghs,et al.  The ER Stress Sensor PERK Coordinates ER-Plasma Membrane Contact Site Formation through Interaction with Filamin-A and F-Actin Remodeling. , 2017, Molecular cell.

[24]  W. Noble,et al.  The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy , 2017, Current Biology.

[25]  J. Rieusset,et al.  Study of Endoplasmic Reticulum and Mitochondria Interactions by In Situ Proximity Ligation Assay in Fixed Cells. , 2016, Journal of visualized experiments : JoVE.

[26]  E. Lalli,et al.  FATE1 antagonizes calcium‐ and drug‐induced apoptosis by uncoupling ER and mitochondria , 2016, EMBO reports.

[27]  S. Baksh,et al.  TMX1 determines cancer cell metabolism as a thiol-based modulator of ER–mitochondria Ca2+ flux , 2016, The Journal of cell biology.

[28]  P. Várnai,et al.  Redox Nanodomains Are Induced by and Control Calcium Signaling at the ER-Mitochondrial Interface. , 2016, Molecular cell.

[29]  H. Vidal,et al.  Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. , 2016, Journal of molecular cell biology.

[30]  J. Hoseki,et al.  Development of a stable ERroGFP variant suitable for monitoring redox dynamics in the ER , 2016, Bioscience reports.

[31]  M. Okumura,et al.  Cysteines 208 and 241 in Ero1α are required for maximal catalytic turnover , 2015, Redox biology.

[32]  D. Ron,et al.  ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding , 2015, The Journal of cell biology.

[33]  Michael T Ryan,et al.  Analysis of ER–mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells , 2015, Journal of Cell Science.

[34]  Güneş Parlakgül,et al.  Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity , 2014, Nature Medicine.

[35]  Robert E. Campbell,et al.  pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis , 2014, The Journal of cell biology.

[36]  F. Zoulim,et al.  Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Is Required for Insulin Signaling and Is Implicated in Hepatic Insulin Resistance , 2014, Diabetes.

[37]  Robert E. Campbell,et al.  Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum , 2014, The Biochemical journal.

[38]  L. Petrucelli,et al.  ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43 , 2014, Nature Communications.

[39]  J. Vance MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. , 2014, Biochimica et biophysica acta.

[40]  S. Hallström,et al.  ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca2+ release , 2014, Molecular biology of the cell.

[41]  Christian Appenzeller‐Herzog,et al.  Destroy and Exploit: Catalyzed Removal of Hydroperoxides from the Endoplasmic Reticulum , 2013, International journal of cell biology.

[42]  M. Palacín,et al.  Mfn2 modulates the UPR and mitochondrial function via repression of PERK , 2013, The EMBO journal.

[43]  L. Missiaen,et al.  Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. , 2013, Biochimica et biophysica acta.

[44]  K. Nader,et al.  Pharmacological brake-release of mRNA translation enhances cognitive memory , 2013, eLife.

[45]  A. Odermatt,et al.  Green fluorescent protein-based monitoring of endoplasmic reticulum redox poise , 2013, Front. Genet..

[46]  D. Hebert,et al.  Protein folding in the endoplasmic reticulum. , 2013, Cold Spring Harbor perspectives in biology.

[47]  L. Maier,et al.  Redox regulation of sodium and calcium handling. , 2013, Antioxidants & redox signaling.

[48]  P. Agostinis,et al.  PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress , 2012, Cell Death and Differentiation.

[49]  J. Vicencio,et al.  Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress , 2011, Journal of Cell Science.

[50]  M. Brand,et al.  Assessing mitochondrial dysfunction in cells , 2011, The Biochemical journal.

[51]  K. Inaba,et al.  Molecular Bases of Cyclic and Specific Disulfide Interchange between Human ERO1α Protein and Protein-disulfide Isomerase (PDI)* , 2011, The Journal of Biological Chemistry.

[52]  L. Scorrano,et al.  During autophagy mitochondria elongate, are spared from degradation and sustain cell viability , 2011, Nature Cell Biology.

[53]  D. Ron,et al.  Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. , 2010, Molecular cell.

[54]  M. Birnbaum,et al.  Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria , 2010, Cell.

[55]  U. Petäjä-Repo,et al.  Human δ opioid receptor biogenesis is regulated via interactions with SERCA2b and calnexin , 2010, The FEBS journal.

[56]  D. Fass,et al.  A Small Molecule Inhibitor of Endoplasmic Reticulum Oxidation 1 (ERO1) with Selectively Reversible Thiol Reactivity* , 2010, The Journal of Biological Chemistry.

[57]  J. Vance,et al.  Ero1α requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM) , 2010, Cell Stress and Chaperones.

[58]  P. Pinton,et al.  Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells , 2009, Nature Protocols.

[59]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.

[60]  T. Simmen,et al.  The subcellular distribution of calnexin is mediated by PACS-2. , 2008, Molecular biology of the cell.

[61]  Teruo Hayashi,et al.  Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regulate Ca2+ Signaling and Cell Survival , 2007, Cell.

[62]  C. Schöneich,et al.  Oxidation and inactivation of SERCA by selective reaction of cysteine residues with amino acid peroxides. , 2007, Chemical research in toxicology.

[63]  R. Wojcikiewicz,et al.  Calcium mobilization via type III inositol 1,4,5-trisphosphate receptors is not altered by PKA-mediated phosphorylation of serines 916, 934, and 1832. , 2007, Cell calcium.

[64]  P. Várnai,et al.  Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels , 2006, The Journal of cell biology.

[65]  C. Mannella,et al.  Structural and functional features and significance of the physical linkage between ER and mitochondria , 2006, The Journal of cell biology.

[66]  J. Smeitink,et al.  Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. , 2005, American journal of physiology. Cell physiology.

[67]  K. Mikoshiba,et al.  Subtype-Specific and ER Lumenal Environment-Dependent Regulation of Inositol 1,4,5-Trisphosphate Receptor Type 1 by ERp44 , 2005, Cell.

[68]  Tullio Pozzan,et al.  BAX and BAK Regulation of Endoplasmic Reticulum Ca2+: A Control Point for Apoptosis , 2003, Science.

[69]  Shu-Bing Qian,et al.  Quantitating protein synthesis, degradation, and endogenous antigen processing. , 2003, Immunity.

[70]  C. Borner,et al.  Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Rocchi,et al.  ERO1-L, a Human Protein That Favors Disulfide Bond Formation in the Endoplasmic Reticulum* , 2000, The Journal of Biological Chemistry.

[72]  G. Hajnóczky,et al.  Quasi‐synaptic calcium signal transmission between endoplasmic reticulum and mitochondria , 1999, The EMBO journal.

[73]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[74]  V. Ingram,et al.  Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. Vance Phospholipid synthesis in a membrane fraction associated with mitochondria. , 1990, The Journal of biological chemistry.

[76]  R. Kelly,et al.  Interaction of heavy chain binding protein (BiP/GRP78) with adenine nucleotides. , 1989, The EMBO journal.

[77]  J. Folch,et al.  A simple method for the isolation and purification of total lipides from animal tissues. , 1957, The Journal of biological chemistry.

[78]  W. Bernhard,et al.  CLOSE TOPOGRAPHICAL RELATIONSHIP BETWEEN MITOCHONDRIA AND ERGASTOPLASM OF LIVER CELLS IN A DEFINITE PHASE OF CELLULAR ACTIVITY , 1956, The Journal of biophysical and biochemical cytology.

[79]  M. Oeffinger,et al.  Single-Step Affinity Purification (ssAP) and Mass Spectrometry of Macromolecular Complexes in the Yeast S. cerevisiae. , 2016, Methods in molecular biology.

[80]  T. Simmen,et al.  Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). , 2013, Biochimica et biophysica acta.