Neurophotonics applications to motor cortex research: a review

Abstract. Neurophotonics methods offer powerful ways to access neuronal signals and circuits. We highlight recent advances and current themes in this area, emphasizing tools for mapping, monitoring, and manipulating excitatory projection neurons and their synaptic circuits in mouse motor cortex.

[1]  Timothy H. Murphy,et al.  Towards a circuit mechanism for movement tuning in motor cortex , 2013, Front. Neural Circuits.

[2]  R. Yuste,et al.  Optical probing of neuronal circuits with calcium indicators. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  L. Looger,et al.  Genetically encoded neural activity indicators , 2012, Current Opinion in Neurobiology.

[4]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[5]  B. Roth,et al.  Remote Control of Neuronal Signaling , 2011, Pharmacological Reviews.

[6]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[7]  Karel Svoboda,et al.  Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex , 2003, Neuron.

[8]  D. Tank,et al.  Functional Clustering of Neurons in Motor Cortex Determined by Cellular Resolution Imaging in Awake Behaving Mice , 2009, The Journal of Neuroscience.

[9]  Yoshio Maruyama,et al.  Transcranial optogenetic stimulation for functional mapping of the motor cortex , 2009, Journal of Neuroscience Methods.

[10]  Martin K. Schwarz,et al.  Revealing the secrets of neuronal circuits with recombinant rabies virus technology , 2012, Front. Neural Circuits.

[11]  L. Looger,et al.  Chemical and Genetic Engineering of Selective Ion Channel–Ligand Interactions , 2011, Science.

[12]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Turner,et al.  Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons. , 2011, Cerebral cortex.

[14]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[15]  Karel Svoboda,et al.  Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex , 2011, Neuron.

[16]  Ian R. Wickersham,et al.  Hierarchical Connectivity and Connection-Specific Dynamics in the Corticospinal–Corticostriatal Microcircuit in Mouse Motor Cortex , 2012, The Journal of Neuroscience.

[17]  Zengcai V. Guo,et al.  Flow of Cortical Activity Underlying a Tactile Decision in Mice , 2014, Neuron.

[18]  C. G. Phillips,et al.  Corticospinal neurones. Their role in movement. , 1977, Monographs of the Physiological Society.

[19]  Nathan G. Clack,et al.  Vibrissa-Based Object Localization in Head-Fixed Mice , 2010, The Journal of Neuroscience.

[20]  Fumitaka Osakada,et al.  Design and generation of recombinant rabies virus vectors , 2013, Nature Protocols.

[21]  Taro Kiritani,et al.  Corticospinal-specific HCN expression in mouse motor cortex: I(h)-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control. , 2011, Journal of neurophysiology.

[22]  David L. Sheinberg,et al.  Optogenetic and Electrical Microstimulation Systematically Bias Visuospatial Choice in Primates , 2014, Current Biology.

[23]  Maik C. Stüttgen,et al.  The Head-fixed Behaving Rat—Procedures and Pitfalls , 2010, Somatosensory & motor research.

[24]  Ian R. Wickersham,et al.  Laminarly Orthogonal Excitation of Fast-Spiking and Low-Threshold-Spiking Interneurons in Mouse Motor Cortex , 2012, The Journal of Neuroscience.

[25]  Matthew T. Kaufman,et al.  An optogenetic toolbox designed for primates , 2011, Nature Neuroscience.

[26]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[27]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[28]  Jeremy D. Schmahmann,et al.  A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale , 2009, PLoS Comput. Biol..

[29]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[30]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[31]  Kevin T. Beier,et al.  Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors , 2011, Proceedings of the National Academy of Sciences.

[32]  T. Murphy,et al.  In vivo Large-Scale Cortical Mapping Using Channelrhodopsin-2 Stimulation in Transgenic Mice Reveals Asymmetric and Reciprocal Relationships between Cortical Areas , 2012, Front. Neural Circuits.

[33]  G. Shepherd Corticostriatal connectivity and its role in disease , 2013, Nature Reviews Neuroscience.

[34]  David J. Anderson,et al.  A Cre-Dependent, Anterograde Transsynaptic Viral Tracer for Mapping Output Pathways of Genetically Marked Neurons , 2011, Neuron.

[35]  Lydia Wood,et al.  Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome , 2010, Neurobiology of Disease.

[36]  Taro Kiritani,et al.  Local-Circuit Phenotypes of Layer 5 Neurons in Motor-Frontal Cortex of YFP-H Mice , 2008, Frontiers in neural circuits.

[37]  Ian R. Wickersham,et al.  Retrograde neuronal tracing with a deletion-mutant rabies virus , 2007, Nature Methods.

[38]  Anna W Roe,et al.  Optogenetics through windows on the brain in the nonhuman primate. , 2013, Journal of neurophysiology.

[39]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[40]  J. Simon Wiegert,et al.  Multiple dynamic representations in the motor cortex during sensorimotor learning , 2012, Nature.

[41]  Daniel N. Hill,et al.  Biomechanics of the Vibrissa Motor Plant in Rat: Rhythmic Whisking Consists of Triphasic Neuromuscular Activity , 2008, The Journal of Neuroscience.

[42]  A. Burkhalter,et al.  Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex , 1984, Nature.

[43]  Jianing Yu,et al.  Top-down laminar organization of the excitatory network in motor cortex , 2008, Nature Neuroscience.

[44]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[45]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[46]  Haruo Kasai,et al.  Spatiotemporal Dynamics of Functional Clusters of Neurons in the Mouse Motor Cortex during a Voluntary Movement , 2013, The Journal of Neuroscience.

[47]  Shenfeng Qiu,et al.  Circuit-Specific Intracortical Hyperconnectivity in Mice with Deletion of the Autism-Associated Met Receptor Tyrosine Kinase , 2011, The Journal of Neuroscience.

[48]  K. Svoboda,et al.  Myosin-dependent targeting of transmembrane proteins to neuronal dendrites , 2009, Nature Neuroscience.

[49]  D. Buxton,et al.  Origins and collateralization of corticospinal, corticopontine, corticorubral and corticostriatal tracts: a multiple retrograde fluorescent tracing study , 1992, Brain Research.

[50]  Bryan M. Hooks,et al.  Laminar Analysis of Excitatory Local Circuits in Vibrissal Motor and Sensory Cortical Areas , 2011, PLoS biology.

[51]  H. Hioki,et al.  Visualization of Cortical Projection Neurons with Retrograde TET-Off Lentiviral Vector , 2012, PloS one.

[52]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[53]  Ian R. Wickersham,et al.  Convergent cortical innervation of striatal projection neurons , 2013, Nature Neuroscience.

[54]  Lin Tian,et al.  Activity in motor-sensory projections reveals distributed coding in somatosensation , 2012, Nature.

[55]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[56]  Ranulfo Romo,et al.  Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates , 2013, Proceedings of the National Academy of Sciences.

[57]  Tomoki Fukai,et al.  Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements , 2009, Nature Neuroscience.

[58]  Timothy H. Murphy,et al.  Distinct Cortical Circuit Mechanisms for Complex Forelimb Movement and Motor Map Topography , 2012, Neuron.

[59]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[60]  James H. Marshel,et al.  New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits , 2011, Neuron.

[61]  D. McVea,et al.  Spontaneous cortical activity alternates between motifs defined by regional axonal projections , 2013, Nature Neuroscience.

[62]  Susana Q. Lima,et al.  PINP: A New Method of Tagging Neuronal Populations for Identification during In Vivo Electrophysiological Recording , 2009, PloS one.

[63]  Fan Wang,et al.  A Circuit for Motor Cortical Modulation of Auditory Cortical Activity , 2013, The Journal of Neuroscience.

[64]  Zengcai V. Guo,et al.  Procedures for Behavioral Experiments in Head-Fixed Mice , 2014, PloS one.

[65]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[66]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[67]  Zengcai V. Guo,et al.  Neural coding during active somatosensation revealed using illusory touch , 2013, Nature Neuroscience.

[68]  Taro Kiritani,et al.  Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex , 2010, Nature Neuroscience.

[69]  Ian R. Wickersham,et al.  Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons , 2010, Nature Protocols.

[70]  P. Matthews,et al.  Neurophysiological approaches to higher brain functions E. V. Evarts, Y. Shinoda and S. P. Wise. Wiley and Sons, New York (1984). 198 pp., cloth £40.90 , 1986, Neuroscience.

[71]  Haruo Kasai,et al.  In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas , 2013, Front. Neural Circuits.

[72]  T. Murphy,et al.  Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice , 2009, Nature Methods.

[73]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[74]  Bryan M. Hooks,et al.  Organization of Cortical and Thalamic Input to Pyramidal Neurons in Mouse Motor Cortex , 2013, The Journal of Neuroscience.

[75]  R. Kötter,et al.  Layer-Specific Intracolumnar and Transcolumnar Functional Connectivity of Layer V Pyramidal Cells in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[76]  Daniel N Hill,et al.  Multibranch activity in basal and tuft dendrites during firing of layer 5 cortical neurons in vivo , 2013, Proceedings of the National Academy of Sciences.

[77]  Edward S. Boyden,et al.  Optogenetic Inactivation Modifies Monkey Visuomotor Behavior , 2012, Neuron.