Bogdanov–Takens resonance in time-delayed systems

We analyze the oscillatory dynamics of a time-delayed dynamical system subjected to a periodic external forcing. We show that, for certain values of the delay, the response can be greatly enhanced by a very small forcing amplitude. This phenomenon is related to the presence of a Bogdanov–Takens bifurcation and displays some analogies to other resonance phenomena, but also substantial differences.

[1]  André Longtin,et al.  Bifurcation analysis of a class of first-order nonlinear delay-differential equations with reflectional symmetry , 2002 .

[2]  Fatihcan M. Atay,et al.  Complex Time-Delay Systems , 2010 .

[3]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[4]  J. M. Sanz-Serna,et al.  Vibrational resonance: a study with high-order word-series averaging , 2016 .

[5]  Tudor C. Ionescu,et al.  TOPICS IN TIME DELAY SYSTEMS: ANALYSIS, ALGORITHMS AND CONTROL , 2009 .

[6]  J. Kurths,et al.  Coherence Resonance in a Noise-Driven Excitable System , 1997 .

[7]  X. Liu,et al.  Controlling vibrational resonance in a multistable system by time delay. , 2010, Chaos.

[8]  Jean Jacques Loiseau,et al.  Applications of Time Delay Systems , 1984 .

[9]  Jianhua Yang,et al.  Delay induces quasi-periodic vibrational resonance , 2010 .

[10]  A. E. Pearson,et al.  Optimization in control theory and practice , 1968 .

[11]  S. A. Robertson,et al.  NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .

[12]  P. McClintock,et al.  LETTER TO THE EDITOR: Vibrational resonance , 2000 .

[13]  Jianhua Yang,et al.  Is the High-Frequency Signal Necessary for the Resonance in the Delayed System? , 2015 .

[14]  Xianbin Liu,et al.  Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators , 2012 .

[15]  Miguel A. F. Sanjuán,et al.  Signal generation and enhancement in a delayed system , 2015, Commun. Nonlinear Sci. Numer. Simul..

[16]  Fundamental theorems of averaging for functional differential equations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[17]  S. Rajasekar,et al.  Theory and numerics of vibrational resonance in Duffing oscillators with time-delayed feedback. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Miguel A. F. Sanjuán,et al.  Chaos-induced resonant effects and its control , 2007 .

[19]  Fatihcan M. Atay Complex Time-Delay Systems: Theory and Applications , 2010 .

[20]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[21]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[22]  Junjie Wei,et al.  Hopf bifurcation Analysis in a Mackey-glass System , 2007, Int. J. Bifurc. Chaos.

[23]  Bernd Krauskopf,et al.  Bifurcation analysis of delay-induced resonances of the El-Niño Southern Oscillation , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Raul Vicente,et al.  Zero-lag long-range synchronization via dynamical relaying. , 2006, Physical review letters.

[25]  Philipp Hövel,et al.  Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Alvar Daza,et al.  Wada property in systems with delay , 2016, Commun. Nonlinear Sci. Numer. Simul..

[27]  Richard H. S. Taylor,et al.  El Niño and the delayed action oscillator , 2007 .

[28]  Miguel A. F. Sanjuán,et al.  Vibrational resonance in a time-delayed genetic toggle switch , 2013, Commun. Nonlinear Sci. Numer. Simul..