It remains a big challenge to develop HDAC inhibitors effective for solid tumors. Previous studies have suggested that the feedback activation of JAK-STAT3 pathway represents a key mechanism leading to resistance to HDAC inhibitors in breast cancer, suggesting the therapeutic promise of JAK/HDAC dual inhibitors. In this work, we discovered a series of pyrrolo[2,3-d]pyrimidine-based derivatives as potent JAK and HDAC dual inhibitors. Especially, compounds 15d and 15h potently inhibited JAK1/2/3 and HDAC1/6 and displayed antiproliferative and proapoptotic activities in triple-negative breast cancer cell lines. Besides, compounds 15d and 15h also diminished the activation of LIFR-JAK-STAT signaling triggered by tumor-associated fibroblasts, which suggests that these compounds could potentially overcome the drug resistance caused by the tumor microenvironment. More importantly, compound 15d effectively inhibited the tumor growth in MDA-MB-231 xenograft tumor model. Overall, this work provides valuable leads and novel antitumor mechanisms for the treatment of the SAHA-resistant triple-negative breast cancers.