An Improved Multiple Importance Sampling Heuristic for Density Estimates in Light Transport Simulations

Vertex connection and merging (VCM) is one of the most robust light transport simulation algorithms developed so far. It combines bidirectional path tracing with photon mapping using multiple importance sampling (MIS). However, there are scene setups where the current weight computation is not optimal. If different merge events on a single path have roughly the same likelihood to be found, but different photon densities, this leads to high variance samples. We show how to improve the heuristic for density estimation events to overcome this issue by including the photon density into the MIS computation. This leads to a faster convergence in VCM and related techniques. The proposed change is easy to implement and is orthogonal to other improvements of the algorithm. CCS Concepts •Computing methodologies → Ray tracing; •Mathematics of computing → Sequential Monte Carlo methods;

[1]  H. Jensen,et al.  Progressive photon mapping , 2008, SIGGRAPH 2008.

[2]  Markus H. Gross,et al.  Practical Path Guiding for Efficient Light‐Transport Simulation , 2017, Comput. Graph. Forum.

[3]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[4]  H. Jensen,et al.  A progressive error estimation framework for photon density estimation , 2010, SIGGRAPH 2010.

[5]  Toshiya Hachisuka,et al.  Parallel progressive photon mapping on GPUs , 2010, SIGGRAPH ASIA.

[6]  Jaroslav Krivánek,et al.  Adjoint-driven Russian roulette and splitting in light transport simulation , 2016, ACM Trans. Graph..

[7]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[8]  Thorsten Grosch,et al.  Pixel Cache Light Tracing , 2017, VMV.

[9]  David Luengo,et al.  Generalized Multiple Importance Sampling , 2015, Statistical Science.

[10]  Vilém Otte Bi-directional path tracing na GPU , 2015 .

[11]  Hendrik P. A. Lensch,et al.  Product Importance Sampling for Light Transport Path Guiding , 2016, Comput. Graph. Forum.

[12]  Toshiya Hachisuka,et al.  Robust light transport simulation via metropolised bidirectional estimators , 2016, ACM Trans. Graph..

[13]  Philipp Slusallek,et al.  Light transport simulation with vertex connection and merging , 2012, ACM Trans. Graph..

[14]  Kun Zhou,et al.  Unbiased photon gathering for light transport simulation , 2015, ACM Trans. Graph..

[15]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[16]  Sylvain Lefebvre,et al.  Perfect spatial hashing , 2006, SIGGRAPH 2006.

[17]  Anton Kaplanyan,et al.  Adaptive progressive photon mapping , 2013, TOGS.

[18]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[19]  Matthias Zwicker,et al.  Progressive photon mapping: A probabilistic approach , 2011, TOGS.

[20]  H. Jensen,et al.  Stochastic progressive photon mapping , 2009, ACM Trans. Graph..

[21]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[22]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .