Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations.

The tunable optoelectronic properties of stacked two-dimensional (2D) crystal monolayers are determined by their stacking orientation, order, and atomic registry. Atomic-resolution Z-contrast scanning transmission electron microscopy (AR-Z-STEM) and electron energy loss spectroscopy (EELS) can be used to determine the exact atomic registration between different layers, in few-layer 2D stacks; however, fast optical characterization techniques are essential for rapid development of the field. Here, using two- and three-layer MoSe2 and WSe2 crystals synthesized by chemical vapor deposition, we show that the generally unexplored low frequency (LF) Raman modes (<50 cm(-1)) that originate from interlayer vibrations can serve as fingerprints to characterize not only the number of layers, but also their stacking configurations. Ab initio calculations and group theory analysis corroborate the experimental assignments determined by AR-Z-STEM and show that the calculated LF mode fingerprints are related to the 2D crystal symmetries.

[1]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[2]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[3]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[4]  Andrea C. Ferrari,et al.  Resonant Raman spectroscopy of twisted multilayer graphene , 2014, Nature Communications.

[5]  G. Duscher,et al.  Digital transfer growth of patterned 2D metal chalcogenides by confined nanoparticle evaporation. , 2014, ACS nano.

[6]  M. Dresselhaus,et al.  Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. , 2014, Nano letters.

[7]  Sefaattin Tongay,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[8]  Astronomy,et al.  Group theory analysis of phonons in two-dimensional transition metal dichalcogenides , 2014, 1407.1226.

[9]  S. Louie,et al.  Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.

[10]  Timothy C. Berkelbach,et al.  Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. , 2014, Nano letters.

[11]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[12]  Vincent Meunier,et al.  First-principles Raman spectra of MoS2, WS2 and their heterostructures. , 2014, Nanoscale.

[13]  D. Smirnov,et al.  New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides , 2014, Scientific Reports.

[14]  C. Franchini,et al.  Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .

[15]  D. He,et al.  Sulfur-catalyzed phase transition in MoS2 under high pressure and temperature , 2014 .

[16]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[17]  C. Kloc,et al.  Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2 , 2013 .

[18]  T. Heine,et al.  Stacking in bulk and bilayer hexagonal boron nitride. , 2013, Physical review letters.

[19]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[20]  A. Shukla,et al.  Anharmonic phonons in few-layer MoS2: Raman spectroscopy of ultralow energy compression and shear modes , 2013, 1304.4122.

[21]  V. Meunier,et al.  Electronic and thermoelectric properties of assembled graphene nanoribbons with elastic strain and structural dislocation , 2013 .

[22]  Christian Kloc,et al.  Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. , 2013, Nanoscale.

[23]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[24]  Jun Zhang,et al.  Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.

[25]  Janna Börner,et al.  Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.

[26]  A. Ferrari,et al.  Raman spectroscopy of shear and layer breathing modes in multilayer MoS2 , 2012, 1212.6796.

[27]  H. Zeng,et al.  Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films , 2012, 1209.1775.

[28]  Y. Wang,et al.  The shear mode of multilayer graphene. , 2011, Nature materials.

[29]  A. Kirov,et al.  Crystallography online: Bilbao Crystallographic Server , 2017 .

[30]  K. Novoselov Nobel Lecture: Graphene: Materials in the Flatland , 2011 .

[31]  Riichiro Saito,et al.  Raman spectroscopy of graphene and carbon nanotubes , 2011 .

[32]  Y. Wang,et al.  The shear mode of multi-layer graphene , 2011 .

[33]  G. Dresselhaus,et al.  Raman spectroscopy as a probe of graphene and carbon nanotubes , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  M. Dresselhaus,et al.  The big picture of Raman scattering in carbon nanotubes , 2007 .

[35]  M. S. Dresselhaus,et al.  Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007 , 2007 .

[36]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[37]  M. S. Dresselhausa,et al.  Raman spectroscopy of carbon nanotubes , 2004 .

[38]  Alfredo Pasquarello,et al.  Raman scattering intensities in α-quartz: A first-principles investigation , 2001 .

[39]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[41]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .