Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations.
暂无分享,去创建一个
B. Sumpter | M. Mahjouri‐Samani | D. Geohegan | V. Meunier | J. Idrobo | A. Puretzky | Xufan Li | L. Liang | Kai Wang | Kai Xiao | L. Basile
[1] Wei Shi,et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.
[2] Wang Yao,et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.
[3] Jun Lou,et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.
[4] Andrea C. Ferrari,et al. Resonant Raman spectroscopy of twisted multilayer graphene , 2014, Nature Communications.
[5] G. Duscher,et al. Digital transfer growth of patterned 2D metal chalcogenides by confined nanoparticle evaporation. , 2014, ACS nano.
[6] M. Dresselhaus,et al. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. , 2014, Nano letters.
[7] Sefaattin Tongay,et al. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.
[8] Astronomy,et al. Group theory analysis of phonons in two-dimensional transition metal dichalcogenides , 2014, 1407.1226.
[9] S. Louie,et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.
[10] Timothy C. Berkelbach,et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. , 2014, Nano letters.
[11] R. Gorbachev. Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.
[12] Vincent Meunier,et al. First-principles Raman spectra of MoS2, WS2 and their heterostructures. , 2014, Nanoscale.
[13] D. Smirnov,et al. New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides , 2014, Scientific Reports.
[14] C. Franchini,et al. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .
[15] D. He,et al. Sulfur-catalyzed phase transition in MoS2 under high pressure and temperature , 2014 .
[16] X. Duan,et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.
[17] C. Kloc,et al. Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2 , 2013 .
[18] T. Heine,et al. Stacking in bulk and bilayer hexagonal boron nitride. , 2013, Physical review letters.
[19] K. Novoselov,et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.
[20] A. Shukla,et al. Anharmonic phonons in few-layer MoS2: Raman spectroscopy of ultralow energy compression and shear modes , 2013, 1304.4122.
[21] V. Meunier,et al. Electronic and thermoelectric properties of assembled graphene nanoribbons with elastic strain and structural dislocation , 2013 .
[22] Christian Kloc,et al. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. , 2013, Nanoscale.
[23] E. Johnston-Halperin,et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.
[24] Jun Zhang,et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.
[25] Janna Börner,et al. Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.
[26] A. Ferrari,et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2 , 2012, 1212.6796.
[27] H. Zeng,et al. Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films , 2012, 1209.1775.
[28] Y. Wang,et al. The shear mode of multilayer graphene. , 2011, Nature materials.
[29] A. Kirov,et al. Crystallography online: Bilbao Crystallographic Server , 2017 .
[30] K. Novoselov. Nobel Lecture: Graphene: Materials in the Flatland , 2011 .
[31] Riichiro Saito,et al. Raman spectroscopy of graphene and carbon nanotubes , 2011 .
[32] Y. Wang,et al. The shear mode of multi-layer graphene , 2011 .
[33] G. Dresselhaus,et al. Raman spectroscopy as a probe of graphene and carbon nanotubes , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[34] M. Dresselhaus,et al. The big picture of Raman scattering in carbon nanotubes , 2007 .
[35] M. S. Dresselhaus,et al. Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007 , 2007 .
[36] Andre K. Geim,et al. Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.
[37] M. S. Dresselhausa,et al. Raman spectroscopy of carbon nanotubes , 2004 .
[38] Alfredo Pasquarello,et al. Raman scattering intensities in α-quartz: A first-principles investigation , 2001 .
[39] Yoshiyuki Kawazoe,et al. First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .
[40] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[41] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .