Linear scaling multireference singles and doubles configuration interaction.

A linear scaling multireference singles and doubles configuration interaction (MRSDCI) method has been developed. By using localized bases to span the occupied and virtual subspace, local truncation schemes can be applied in tandem with integral screening to reduce the various bottlenecks in a MRSDCI calculation. Among these, the evaluation of electron repulsion integrals and their subsequent transformation, together with the diagonalization of the large CI Hamiltonian matrix, correspond to the most computationally intensive steps in a MRSDCI calculation. We show that linear scaling is possible within each step. The scaling of the method with system size is explored with a system of linear alkane chains and we proceed to demonstrate this method can produce smooth potential energy surfaces via calculating the dissociation of trans-6-dodecene (C(12)H(24)) along the central C[Double Bond]C bond.

[1]  Christian Ochsenfeld,et al.  Rigorous integral screening for electron correlation methods. , 2005, The Journal of chemical physics.

[2]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .

[3]  H. Schaefer,et al.  Brillouin-Wigner coupled cluster theory: Fock-space approach , 2002 .

[4]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[5]  Piotr Piecuch,et al.  Two new classes of non-iterative coupled-cluster methods derived from the method of moments of coupled-cluster equations , 2006 .

[6]  D. Yarkony,et al.  Modern Electronic Structure Theory: Part I , 1995 .

[7]  Peter Pulay,et al.  The local correlation treatment. II. Implementation and tests , 1988 .

[8]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[9]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[10]  S. Wilson,et al.  On the generalized multi-reference Brillouin-Wigner coupled cluster theory , 2001 .

[11]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[12]  E. Carter,et al.  Size extensive modification of local multireference configuration interaction. , 2004, The Journal of chemical physics.

[13]  R. Lindh,et al.  Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. , 2007, The Journal of chemical physics.

[14]  I. Røeggen,et al.  On the Beebe-Linderberg two-electron integral approximation , 1986 .

[15]  Ajit Banerjee,et al.  Applications of multiconfigurational coupled‐cluster theory , 1982 .

[16]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[17]  T. Martínez,et al.  LOCAL WEAK PAIRS SPECTRAL AND PSEUDOSPECTRAL SINGLES AND DOUBLES CONFIGURATION INTERACTION , 1996 .

[18]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[19]  Emily A. Carter,et al.  PSEUDOSPECTRAL METHODS APPLIED TO THE ELECTRON CORRELATION PROBLEM , 1995 .

[20]  Francesco A Evangelista,et al.  Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. , 2007, The Journal of chemical physics.

[21]  Roland Lindh,et al.  Unbiased auxiliary basis sets for accurate two-electron integral approximations. , 2007, The Journal of chemical physics.

[22]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[23]  B. Roos,et al.  A new method for large-scale Cl calculations , 1972 .

[24]  Richard A. Friesner,et al.  Pseudospectral localized Mo/ller–Plesset methods: Theory and calculation of conformational energies , 1995 .

[25]  Roland Lindh,et al.  Integral-direct electron correlation methods , 1999 .

[26]  J. H. van Lenthe,et al.  The direct CI method , 2006 .

[27]  Thomas Bondo Pedersen,et al.  Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. , 2004, The Journal of chemical physics.

[28]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[29]  Emily A. Carter,et al.  Pseudospectral correlation methods on distributed memory parallel architectures , 1995 .

[30]  Emily A. Carter,et al.  Multi-reference weak pairs local configuration interaction: efficient calculations of bond breaking , 2001 .

[31]  Wei Li,et al.  An efficient implementation of the "cluster-in-molecule" approach for local electron correlation calculations. , 2006, The Journal of chemical physics.

[32]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[33]  E. Carter,et al.  Removal of the bottleneck in local correlation methods , 1997 .

[34]  Rodney J. Bartlett,et al.  A Hilbert space multi-reference coupled-cluster study of the H4 model system , 1991 .

[35]  Stephen Wilson,et al.  Universal basis sets and Cholesky decomposition of the two-electron integral matrix , 1990 .

[36]  R. Bartlett,et al.  Fock space multireference coupled cluster method with full inclusion of connected triples for excitation energies. , 2004, The Journal of chemical physics.

[37]  Rodney J Bartlett,et al.  A natural linear scaling coupled-cluster method. , 2004, The Journal of chemical physics.

[38]  Emily A. Carter,et al.  Pseudospectral Møller-Plesset perturbation theory through third order , 1994 .

[39]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[40]  Nevin Horace Oliphant,et al.  A multireference coupled-cluster method using a single-reference formalism. , 1991 .

[41]  Martin Head-Gordon,et al.  Connections between coupled cluster and generalized valence bond theories , 2001 .

[42]  Uttam Sinha Mahapatra,et al.  A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications , 1999 .

[43]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[44]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[45]  J. Paldus,et al.  Multi-reference Brillouin–Wigner coupled-cluster method with a general model space , 2005 .

[46]  Ludwik Adamowicz,et al.  A state-selective multireference coupled-cluster theory employing the single-reference formalism , 1993 .

[47]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[48]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[49]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[50]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[51]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[52]  E. Carter,et al.  Local weak-pairs pseudospectral multireference configuration interaction , 2002 .

[53]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[54]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[55]  Martin Head-Gordon,et al.  Auxiliary basis expansions for large-scale electronic structure calculations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Paldus,et al.  Performance of the general-model-space state-universal coupled-cluster method. , 2004, The Journal of chemical physics.

[57]  EOM-CCSDT study of the low-lying ionization potentials of ethylene, acetylene and formaldehyde , 2004 .

[58]  Claus Ehrhardt,et al.  The coupled pair functional (CPF). A size consistent modification of the CI(SD) based on an energy functional , 1985 .

[59]  J. Simons,et al.  Application of cholesky-like matrix decomposition methods to the evaluation of atomic orbital integrals and integral derivatives , 1989 .

[60]  J. Pittner,et al.  Multireference Brillouin-Wigner coupled clusters method with noniterative perturbative connected triples. , 2006, The Journal of chemical physics.

[61]  Jiří Pittner,et al.  Continuous transition between Brillouin-Wigner and Rayleigh-Schrödinger perturbation theory, generalized Bloch equation, and Hilbert space multireference coupled cluster , 2003 .

[62]  T. Martínez,et al.  Pseudospectral multireference single and double excitation configuration interaction , 1995 .

[63]  Martin Head-Gordon,et al.  Closely approximating second-order Mo/ller–Plesset perturbation theory with a local triatomics in molecules model , 2000 .

[64]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[65]  J. Paldus,et al.  Analysis of the multireference state-universal coupled-cluster Ansatz , 2003 .

[66]  S. Chattopadhyay,et al.  A state-specific approach to multireference coupled electron-pair approximation like methods: development and applications. , 2004, The Journal of chemical physics.

[67]  Emily A. Carter,et al.  Pseudospectral full configuration interaction , 1992 .

[68]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[69]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[70]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[71]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[72]  Guntram Rauhut,et al.  Analytical energy gradients for local second-order Mo/ller–Plesset perturbation theory , 1998 .

[73]  Piotr Piecuch,et al.  Single-reference, size-extensive, non-iterative coupled-cluster approaches to bond breaking and biradicals , 2006 .

[74]  Francesco A Evangelista,et al.  High-order excitations in state-universal and state-specific multireference coupled cluster theories: model systems. , 2006, The Journal of chemical physics.

[75]  E. Carter,et al.  Reduced Scaling Electron Correlation Methods , 2004 .

[76]  Alistair P. Rendell,et al.  COUPLED-CLUSTER THEORY EMPLOYING APPROXIMATE INTEGRALS : AN APPROACH TO AVOID THE INPUT/OUTPUT AND STORAGE BOTTLENECKS , 1994 .

[77]  Ivan Hubač,et al.  Size-extensivity correction for the state-specific multireference Brillouin–Wigner coupled-cluster theory , 2000 .

[78]  Frederick R Manby,et al.  Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. , 2004, The Journal of chemical physics.

[79]  Pseudospectral double excitation configuration interaction , 1993 .

[80]  Rodney J. Bartlett,et al.  A multi-reference coupled-cluster method for molecular applications , 1984 .

[81]  Emily A. Carter,et al.  Local correlation in the virtual space in multireference singles and doubles configuration interaction , 2003 .

[82]  Martin Head-Gordon,et al.  Noniterative local second order Mo/ller–Plesset theory: Convergence with local correlation space , 1998 .

[83]  Christian Ochsenfeld,et al.  Multipole-based integral estimates for the rigorous description of distance dependence in two-electron integrals. , 2005, The Journal of chemical physics.

[84]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[85]  P. Piecuch,et al.  A comparison of the renormalized and active-space coupled-cluster methods: Potential energy curves of BH and F2 , 2001 .

[86]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[87]  P. Piecuch,et al.  The State-Universal Multi-Reference Coupled-Cluster Theory: An Overview of Some Recent Advances , 2002 .

[88]  Robert J. Gdanitz,et al.  A new version of the multireference averaged coupled‐pair functional (MR‐ACPF‐2) , 2001 .