Another Look at the Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)

This paper provides a new way of developing the "Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)" [3] that is widely used for minimizing composite convex functions with a nonsmooth term such as the ℓ1 regularizer. In particular, this paper shows that FISTA corresponds to an optimized approach to accelerating the proximal gradient method with respect to a worst-case bound of the cost function. This paper then proposes a new algorithm that is derived by instead optimizing the step coefficients of the proximal gradient method with respect to a worst-case bound of the composite gradient mapping. The proof is based on the worst-case analysis called Performance Estimation Problem in [11].

[1]  A. Chambolle,et al.  On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm” , 2015, J. Optim. Theory Appl..

[2]  Renato D. C. Monteiro,et al.  An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and Its Implications to Second-Order Methods , 2013, SIAM J. Optim..

[3]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[4]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[5]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[6]  Ion Necoara,et al.  Iteration complexity analysis of dual first-order methods for conic convex programming , 2014, Optim. Methods Softw..

[7]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[8]  Jeffrey A. Fessler,et al.  On the Convergence Analysis of the Optimized Gradient Method , 2015, J. Optim. Theory Appl..

[9]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[10]  Marc Teboulle,et al.  Performance of first-order methods for smooth convex minimization: a novel approach , 2012, Mathematical Programming.

[11]  Emmanuel J. Candès,et al.  Adaptive Restart for Accelerated Gradient Schemes , 2012, Foundations of Computational Mathematics.

[12]  Adrien B. Taylor,et al.  Exact Worst-Case Performance of First-Order Methods for Composite Convex Optimization , 2015, SIAM J. Optim..

[13]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[14]  Jeffrey A. Fessler,et al.  Generalizing the Optimized Gradient Method for Smooth Convex Minimization , 2016, SIAM J. Optim..

[15]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[16]  Marc Teboulle,et al.  A fast dual proximal gradient algorithm for convex minimization and applications , 2014, Oper. Res. Lett..

[17]  Adrien B. Taylor,et al.  Smooth strongly convex interpolation and exact worst-case performance of first-order methods , 2015, Mathematical Programming.

[18]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[19]  Marc Teboulle,et al.  An $O(1/k)$ Gradient Method for Network Resource Allocation Problems , 2014, IEEE Transactions on Control of Network Systems.

[20]  Marc Teboulle,et al.  An optimal variant of Kelley’s cutting-plane method , 2014, Math. Program..

[21]  Juan Peypouquet,et al.  Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity , 2018, Math. Program..

[22]  Saeed Ghadimi,et al.  Accelerated gradient methods for nonconvex nonlinear and stochastic programming , 2013, Mathematical Programming.

[23]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[24]  Donghwan Kim,et al.  Optimized first-order methods for smooth convex minimization , 2014, Mathematical Programming.

[25]  Yurii Nesterov,et al.  Double Smoothing Technique for Large-Scale Linearly Constrained Convex Optimization , 2012, SIAM J. Optim..

[26]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[27]  Benjamin Recht,et al.  Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints , 2014, SIAM J. Optim..

[28]  Yoel Drori,et al.  The exact information-based complexity of smooth convex minimization , 2016, J. Complex..

[29]  Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .

[30]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[31]  Stephen P. Boyd,et al.  Recent Advances in Learning and Control , 2008, Lecture Notes in Control and Information Sciences.