Constitutive modelling of anisotropic creep deformation in single crystal blade alloys SRR99 and CMSX-4
暂无分享,去创建一个
D. M. Knowles | D. W. Maclachlan | D. Knowles | Duncan W. MacLachlan | Lawrence W. Wright | Satish Gunturi | D. W. MacLachlan | L. W. Wright | S.S.K. Gunturi
[1] Georges Cailletaud,et al. Single Crystal Modeling for Structural Calculations: Part 1—Model Presentation , 1991 .
[2] Robert A. Schwarzer,et al. Automated crystal lattice orientation mapping using a computer-controlled SEM , 1997 .
[3] G. Weng. Anisotropic hardening in single crystals and the plasticity of polycrystals , 1987 .
[4] R. MacKay,et al. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals , 1982 .
[5] D. Nouailhas,et al. On the micro-macro modelling of single crystal behavior , 1997 .
[6] G. Cailletaud,et al. Single Crystal Modeling for Structural Calculations: Part 2—Finite Element Implementation , 1991 .
[7] R. Asaro,et al. Micromechanics of Crystals and Polycrystals , 1983 .
[8] P. J. Henderson,et al. Observations of deformation and fracture heterogeneities in a nickel-base superalloy using electron back scattering patterns , 1988 .
[9] K. S. Havner. Comparisons of crystal hardening laws in multiple slip , 1985 .
[10] D. Smith,et al. Development of an anisotropic constitutive model for single crystal superalloy for combined fatigue and creep loading , 1998 .
[11] K. S. Havner,et al. Investigation of a one-parameter family of hardening rules in single slip in f.c.c. crystals , 1991 .
[12] G. Cailletaud,et al. Finite element analysis of the mechanical behavior of two-phase single-crystal superalloys , 1996 .
[13] R. Reed,et al. Creep of CMSX-4 superalloy single crystals: effects of misorientation and temperature , 1999 .
[14] Peter E. McHugh,et al. Modelling of creep in a Ni base superalloy using a single crystal plasticity model , 1997 .
[15] Klaus-Jürgen Bathe,et al. A hyperelastic‐based large strain elasto‐plastic constitutive formulation with combined isotropic‐kinematic hardening using the logarithmic stress and strain measures , 1990 .
[16] G. Eggeler,et al. Dislocation reactions at γ/γ′-interfaces during shear creep deformation in the macroscopic crystallographic shear system (001)[110] of CMSX6 superalloy single crystals at 1025°C , 1998 .
[17] R. Ghosh,et al. Creep deformation of single crystal superalloys—modelling the crystallographic anisotropy , 1990 .
[18] A. Bertram,et al. Damage modeling of the single crystal superalloy SRR99 under monotonous creep , 1998 .
[19] G. Eggeler,et al. The principal facet stress as a parameter for predicting creep rupture under multiaxial stresses , 1989 .
[20] H. Brehm,et al. Material model describing the orientation dependent creep behavior of single crystals based on dislocation densities of slip systems , 1999 .
[21] K. P. Walker,et al. The viscoplastic behavior of Hastelloy-X single crystal , 1993 .
[22] Alan Needleman,et al. An analysis of nonuniform and localized deformation in ductile single crystals , 1982 .
[23] U. Glatzel,et al. Analysis of matrix and interfacial dislocations in the nickel base superalloy CMSX-4 after creep in [1̄11] direction , 1994 .
[24] David R Hayhurst,et al. Creep rupture under multi-axial states of stress , 1972 .
[25] A. Argon,et al. Creep resistance of CMSX-3 nickel base superalloy single crystals , 1992 .
[26] F. Nabarro. The physics of creep , 1995 .