Strain Partitioning and Present‐Day Fault Kinematics in NW Tibet From Envisat SAR Interferometry

An 8 year archive of Envisat synthetic aperture radar (SAR) data over a 300 × 500 km2 wide area in northwestern Tibet is analyzed to construct a line‐of‐sight map of the current surface velocity field. The resulting velocity map reveals (1) a velocity gradient across the Altyn Tagh fault, (2) a sharp velocity change along a structure following the base of the alluvial fans in southern Tarim, and (3) a broad velocity gradient, following the Jinsha suture. The interferometric synthetic aperture radar velocity field is combined with published GPS data to constrain the geometry and slip rates of a fault model consisting of a vertical fault plane under the Altyn Tagh fault and a shallow flat décollement ending in a steeper ramp on the Tarim side. The solutions converge toward 0.7 mm/yr of pure thrusting on the décollement‐ramp system and 10.5 mm/yr of left‐lateral strike‐slip movement on the Altyn Tagh fault, below a 17 km locking depth. A simple elastic dislocation model across the Jinsha suture shows that data are consistent with 4–8 mm/yr of left‐lateral shear across this structure. Interferometric synthetic aperture radar processing steps include implementing a stepwise unwrapping method starting with high‐quality interferograms to assist in unwrapping noisier interferograms, iteratively estimating long‐wavelength spatial ramps, and referencing all interferograms to bedrock pixels surrounding sedimentary basins. A specific focus on atmospheric delay estimation using the ERA‐Interim model decreases the uncertainty on the velocity across the Tibet border by a factor of 2.

[1]  M. Simoes,et al.  Kinematics of Active Deformation Across the Western Kunlun Mountain Range (Xinjiang, China) and Potential Seismic Hazards Within the Southern Tarim Basin , 2017 .

[2]  A. Copley,et al.  Fault mechanics and post-seismic deformation at Bam, SE Iran , 2017 .

[3]  Wei Wang,et al.  Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements , 2017 .

[4]  Marie-Pierre Doin,et al.  Large‐scale InSAR monitoring of permafrost freeze‐thaw cycles on the Tibetan Plateau , 2017 .

[5]  S. Daout,et al.  Kite - Software for Rapid Earthquake Source Optimisation from InSAR Surface Displacement , 2017 .

[6]  Henriette Sudhaus,et al.  Pyrocko - An open-source seismology toolbox and library , 2017 .

[7]  Zhen Liu,et al.  Constraining the kinematics of metropolitan Los Angeles faults with a slip‐partitioning model , 2016, Geophysical research letters.

[8]  Jie Chen,et al.  Thrust faulting and 3D ground deformation of the 3 July 2015 Mw 6.4 Pishan, China earthquake from Sentinel-1A radar interferometry , 2016 .

[9]  Zhaojie Guo,et al.  Large-scale displacement along the Altyn Tagh Fault (North Tibet) since its Eocene initiation: Insight from detrital zircon U–Pb geochronology and subsurface data , 2016 .

[10]  P. R. DeVries,et al.  Kinematically consistent models of viscoelastic stress evolution , 2016 .

[11]  Pietro Milillo,et al.  An aseismic slip transient on the North Anatolian Fault , 2016 .

[12]  Xi-wei Xu,et al.  Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: Implications for the sedimentary‐tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau , 2016 .

[13]  G. Peltzer,et al.  Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR , 2016 .

[14]  Yang Liu,et al.  Interseismic Deformation of the Altyn Tagh Fault Determined by Interferometric Synthetic Aperture Radar (InSAR) Measurements , 2016, Remote. Sens..

[15]  R. Jolivet,et al.  Fault rheology in an aseismic fold‐thrust belt (Shahdad, eastern Iran) , 2015 .

[16]  Heresh Fattahi,et al.  InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay , 2015 .

[17]  Yuri Fialko,et al.  Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone , 2015 .

[18]  Peter Molnar,et al.  Present‐day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements , 2015 .

[19]  Cedric Twardzik,et al.  InSAR measurement of the deformation around Siling Co Lake: Inferences on the lower crust viscosity in central Tibet , 2015 .

[20]  Frederic Masson,et al.  Landslide deformation monitoring with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation method , 2015 .

[21]  Ramon F. Hanssen,et al.  Detection of permafrost sensitivity of the Qinghai–Tibet railway using satellite radar interferometry , 2015 .

[22]  Tim J. Wright,et al.  A spatially variable power law tropospheric correction technique for InSAR data , 2015 .

[23]  Heresh Fattahi,et al.  InSAR uncertainty due to orbital errors , 2014 .

[24]  R. Bürgmann,et al.  Probing the lithospheric rheology across the eastern margin of the Tibetan Plateau , 2014 .

[25]  Hyung-Sup Jung,et al.  A Novel Multitemporal InSAR Model for Joint Estimation of Deformation Rates and Orbital Errors , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Fabio Bovenga,et al.  Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives , 2014 .

[27]  Chengshan Wang,et al.  Outward-growth of the Tibetan Plateau during the Cenozoic: A review ☆ , 2014 .

[28]  A. Copley Postseismic afterslip 30 years after the 1978 Tabas-e-Golshan (Iran) earthquake: observations and implications for the geological evolution of thrust belts , 2014 .

[29]  Marie-Pierre Doin,et al.  Improving InSAR geodesy using Global Atmospheric Models , 2014 .

[30]  Jean Chery,et al.  Nailing down the slip rate of the Altyn Tagh fault , 2013 .

[31]  W. Gan,et al.  Three‐dimensional velocity field of present‐day crustal motion of the Tibetan Plateau derived from GPS measurements , 2013 .

[32]  T. Wright,et al.  Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR , 2013 .

[33]  Marie-Pierre Doin,et al.  Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: Implications for fault frictional properties , 2013 .

[34]  E. Kirby,et al.  The growth of northeastern Tibet and its relevance to large‐scale continental geodynamics: A review of recent studies , 2013 .

[35]  Daniel Carrizo,et al.  Andean structural control on interseismic coupling in the North Chile subduction zone , 2013 .

[36]  Tazio Strozzi,et al.  Interpretation of Aerial Photographs and Satellite SAR Interferometry for the Inventory of Landslides , 2013, Remote. Sens..

[37]  Xiaodian Jiang,et al.  Uplift of the West Kunlun Range, northern Tibetan Plateau, dominated by brittle thickening of the upper crust , 2013 .

[38]  P. R. DeVries,et al.  Earthquake cycle deformation in the Tibetan plateau with a weak mid‐crustal layer , 2012 .

[39]  Marie-Pierre Doin,et al.  Long-term growth of the Himalaya inferred from interseismic InSAR measurement , 2012 .

[40]  Xi-wei Xu,et al.  The Pingding segment of the Altyn Tagh Fault (91°E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces , 2012 .

[41]  Caijun Xu,et al.  Postseismic motion after the 2001 MW 7.8 Kokoxili earthquake in Tibet observed by InSAR time series , 2012 .

[42]  Andrea Manconi,et al.  Joint analysis of displacement time series retrieved from SAR phase and amplitude: Impact on the estimation of volcanic source parameters , 2012 .

[43]  Jean-Philippe Avouac,et al.  Multi-Link InSAR Time Series: Enhancement of a Wrapped Interferometric Database , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[44]  Xiaoli Ding,et al.  Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation‐dependent interpolation model , 2012 .

[45]  T. Wright,et al.  Satellite geodetic imaging reveals internal deformation of western Tibet , 2012 .

[46]  A. Hooper,et al.  Recent advances in SAR interferometry time series analysis for measuring crustal deformation , 2012 .

[47]  Manoochehr Shirzaei,et al.  Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms , 2012 .

[48]  J. Elliott,et al.  Interseismic strain accumulation across the Manyi fault (Tibet) prior to the 1997 Mw 7.6 earthquake , 2011 .

[49]  Brian Brisco,et al.  A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada , 2011 .

[50]  Fred F. Pollitz,et al.  Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake , 2011 .

[51]  Marie-Pierre Doin,et al.  Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data , 2011 .

[52]  Marie-Pierre Doin,et al.  Dem corrections before unwrapping in a Small Baseline strategy for InSar time series analysis , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[53]  Henriette Sudhaus,et al.  Source model for the 1997 Zirkuh earthquake (MW = 7.2) in Iran derived from JERS and ERS InSAR observations , 2011 .

[54]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[55]  Virginie Pinel,et al.  Presentation Of The Small Baseline NSBAS Processing Chain On A Case Example: The ETNA Deformation Monitoring From 2003 to 2010 Using ENVISAT Data , 2011 .

[56]  Yngvar Larsen,et al.  InSAR Deformation Time Series Using an $L_{1}$ -Norm Small-Baseline Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[57]  John M. Wahr,et al.  InSAR measurements of surface deformation over permafrost on the North Slope of Alaska , 2010 .

[58]  M. Simons,et al.  A multiscale approach to estimating topographically correlated propagation delays in radar interferograms , 2010 .

[59]  F. Tupin,et al.  Time series analysis of Mexico City subsidence constrained by radar interferometry , 2009 .

[60]  Marie-Pierre Doin,et al.  Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models , 2009 .

[61]  Yann Klinger,et al.  September 2005 Manda Hararo‐Dabbahu rifting event, Afar (Ethiopia): Constraints provided by geodetic data , 2009 .

[62]  Wang Xiaofeng,et al.  Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet , 2009 .

[63]  M. Taylor,et al.  Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism , 2009 .

[64]  Ryan D. Gold,et al.  Riser diachroneity, lateral erosion, and uncertainty in rates of strike‐slip faulting: A case study from Tuzidun along the Altyn Tagh Fault, NW China , 2009 .

[65]  Marie-Pierre Doin,et al.  Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR , 2008 .

[66]  Leigh H. Royden,et al.  The role of crustal strength variations in shaping orogenic plateaus, with application to Tibet , 2008 .

[67]  Tim J. Wright,et al.  InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays , 2008 .

[68]  Romain Jolivet,et al.  Thin‐plate modeling of interseismic deformation and asymmetry across the Altyn Tagh fault zone , 2008 .

[69]  Caijun Xu,et al.  Coseismic deformation and slip distribution of the 1997 Mw7.5 Manyi, Tibet, earthquake from InSAR measurements , 2007 .

[70]  T. Wright,et al.  Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska , 2007 .

[71]  Howard A. Zebker,et al.  Interferogram formation in the presence of complex and large deformation , 2007 .

[72]  Tim J. Wright,et al.  Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling , 2007 .

[73]  Tim J. Wright,et al.  Fault slip in the 1997 Manyi, Tibet earthquake from linear elastic modelling of InSAR displacements , 2007 .

[74]  M. Doin,et al.  Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure , 2007 .

[75]  Eric Cowgill,et al.  Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China , 2007 .

[76]  G. Peltzer,et al.  Current slip rates on conjugate strike‐slip faults in central Tibet using synthetic aperture radar interferometry , 2006 .

[77]  J. Muller,et al.  Interferometric synthetic aperture radar atmospheric correction: GPS topography‐dependent turbulence model , 2006 .

[78]  F. Sigmundsson,et al.  Temporal development of the 1999 intrusive episode in the Eyjafjallajökull volcano, Iceland, derived from InSAR images , 2006 .

[79]  Laurent Ferro-Famil,et al.  Range resolution improvement of airborne SAR images , 2006, IEEE Geoscience and Remote Sensing Letters.

[80]  M. Caffee,et al.  The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate , 2005 .

[81]  Xi-wei Xu,et al.  Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model , 2005 .

[82]  Peizhen Zhang,et al.  Continuous deformation of the Tibetan Plateau from global positioning system data , 2004 .

[83]  T. Wright,et al.  InSAR Observations of Low Slip Rates on the Major Faults of Western Tibet , 2004, Science.

[84]  Fabio Rocca,et al.  Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis , 2004, Science.

[85]  Frederick J. Ryerson,et al.  Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh , 2004 .

[86]  R. Bilham,et al.  Inescapable slow slip on the Altyn Tagh fault , 2004 .

[87]  Mei Jiang,et al.  Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet , 2004 .

[88]  P. Rosen,et al.  Updated repeat orbit interferometry package released , 2004 .

[89]  Chung-Pai Chang,et al.  Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data , 2003 .

[90]  T. Harrison,et al.  Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau , 2003 .

[91]  P. Tapponnier,et al.  Reconstruction of the deformed collision zone Between India and Asia by backward motion of lithospheric blocks , 2003 .

[92]  M. Caffee,et al.  Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China , 2002 .

[93]  Peter J. Clarke,et al.  Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna , 2002 .

[94]  H. Garbeil,et al.  The 12 September 1999 Upper East Rift Zone dike intrusion at Kilauea Volcano, Hawaii , 2002 .

[95]  M. Caffee,et al.  Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology , 2002 .

[96]  Alan Dodson,et al.  Atmospheric water vapour correction to InSAR surface motion measurements on mountains: Results from a dense GPS network on Mount Etna , 2002 .

[97]  J. Malavieille,et al.  Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission-track constraints , 2001 .

[98]  Bertrand Meyer,et al.  Oblique Stepwise Rise and Growth of the Tibet Plateau , 2001, Science.

[99]  J Ramón Arrowsmith,et al.  Late Holocene earthquake history of the central Altyn Tagh fault, China , 2001 .

[100]  Paul A. Rosen,et al.  Transient strain accumulation and fault interaction in the eastern California shear zone , 2001 .

[101]  Gerald W. Bawden,et al.  Tectonic contraction across Los Angeles after removal of groundwater pumping effects , 2001, Nature.

[102]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[103]  Francesco Sarti,et al.  Detection of ground subsidence in the city of Paris using radar interferometry: Isolation of deformation from atmospheric artifacts using correlation , 2000 .

[104]  T. Farr,et al.  Shuttle radar topography mission produces a wealth of data , 2000 .

[105]  Leigh H. Royden,et al.  Topographic ooze: Building the eastern margin of Tibet by lower crustal flow , 2000 .

[106]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[107]  P. Rosen,et al.  SYNTHETIC APERTURE RADAR INTERFEROMETRY TO MEASURE EARTH'S SURFACE TOPOGRAPHY AND ITS DEFORMATION , 2000 .

[108]  J. Freymueller,et al.  Geodetic evidence for a low slip rate in the Altyn Tagh fault system , 2000, Nature.

[109]  Peltzer,et al.  Evidence of Nonlinear Elasticity of the Crust from the Mw7.6 Manyi (Tibet) Earthquake. , 1999, Science.

[110]  U. Wegmuller,et al.  Land subsidence in Mexico City mapped by ERS differential SAR interferometry , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[111]  H. Zebker,et al.  Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation , 1999 .

[112]  H. Zebker,et al.  High-Resolution Water Vapor Mapping from Interferometric Radar Measurements. , 1999, Science.

[113]  R. Lacassin,et al.  Shear heating in continental strike-slip shear zones:model and field examples , 1999 .

[114]  Yehuda Bock,et al.  Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products , 1998 .

[115]  Masson,et al.  Tomographic evidence for localized lithospheric shear along the altyn tagh fault , 1998, Science.

[116]  Bertrand Meyer,et al.  Crustal thickening in Gansu‐Qinghai, lithospheric mantle subduction, and oblique, strike‐slip controlled growth of the Tibet plateau , 1998 .

[117]  Christophe Delacourt,et al.  Tropospheric corrections of SAR interferograms with strong topography. Application to Etna , 1998 .

[118]  Peter Molnar,et al.  Active deformation of Asia : From kinematics to dynamics , 1997 .

[119]  Peter Molnar,et al.  The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults , 1997 .

[120]  Wang,et al.  Surface Deformation and Lower Crustal Flow in Eastern Tibet , 1997, Science.

[121]  G. Peltzer,et al.  Present‐day kinematics of Asia derived from geologic fault rates , 1996 .

[122]  Christophe Delacourt,et al.  Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry , 1996 .

[123]  N. Arnaud,et al.  Tectonics of Western Tibet, between the Tarim and the Indus , 1996 .

[124]  Bertrand Meyer,et al.  Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China) , 1995 .

[125]  Paul Tapponnier,et al.  Kinematic model of active deformation in central Asia , 1993 .

[126]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[127]  Philip England,et al.  Extension during continental convergence, with application to the Tibetan Plateau , 1989 .

[128]  G. Peltzer,et al.  Magnitude of Late Quaternary Left-Lateral Displacements Along the North Edge of Tibet , 1989, Science.

[129]  G. Peltzer,et al.  Formation and evolution of strike‐slip faults, rifts, and basins during the India‐Asia Collision: An experimental approach , 1988 .

[130]  P. Molnar,et al.  Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet , 1986, Nature.

[131]  Y. Okada Surface deformation due to shear and tensile faults in a half-space , 1985 .

[132]  P. R. Cobbold,et al.  Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine , 1982 .

[133]  P. England,et al.  A thin viscous sheet model for continental deformation , 1982 .

[134]  Peter Molnar,et al.  Active faulting and tectonics in China , 1977 .

[135]  P. Molnar,et al.  Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. , 1975, Science.