Automatic Synthesis of Optimal-Size Concentrators by Answer Set Programming

A concentrator is a circuit with N inputs and \(M\le N\) outputs that can route any given subset of \(K\le M\) valid inputs to K of its M outputs. Concentrator circuits are important building blocks of many parallel algorithms. The design of optimal concentrator circuits is however a challenging task that has already been considered in many research papers. In this paper, we show how answer set programming can be used to automatically generate concentrator circuits of provably optimal size.

[1]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[2]  Jakub Závodný,et al.  Optimal Sorting Networks , 2013, LATA.

[3]  Mike Müller,et al.  New Bounds on Optimal Sorting Networks , 2015, CiE.

[4]  Klaus Schneider,et al.  Verifying the concentration property of permutation networks by BDDs , 2016, 2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE).

[5]  Daniel Bundala,et al.  Optimal-depth sorting networks , 2014, J. Comput. Syst. Sci..

[6]  Georg Gottlob,et al.  The DLV System , 2002, JELIA.

[7]  Martin Gebser,et al.  clasp : A Conflict-Driven Answer Set Solver , 2007, LPNMR.

[8]  Ian Parberry,et al.  The Pairwise Sorting Network , 1992, Parallel Process. Lett..

[9]  Peter Schneider-Kamp,et al.  Sorting Networks: to the End and Back Again , 2015, J. Comput. Syst. Sci..

[10]  Steven J. E. Wilton,et al.  Concentrator access networks for programmable logic cores on SoCs , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[11]  Martin Gebser,et al.  Conflict-Driven Answer Set Enumeration , 2007, LPNMR.

[12]  Klaus Schneider,et al.  Synthesis of Parallel Sorting Networks using SAT Solvers , 2011, MBMV.

[13]  Thomas Eiter,et al.  Answer Set Programming: A Primer , 2009, Reasoning Web.

[14]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[15]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[16]  Uwe Schöning Smaller superconcentrators of density 28 , 2006, Inf. Process. Lett..

[17]  F. Chung On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.