Large‐Area Assembly of Densely Aligned Single‐Walled Carbon Nanotubes Using Solution Shearing and Their Application to Field‐Effect Transistors

Dense alignment of single-walled carbon nanotubes over a large area is demonstrated using a novel solution-shearing technique. A density of 150-200 single-walled carbon nanotubes per micro-meter is achieved with a current density of 10.08 μA μm(-1) at VDS = -1 V. The on-current density is improved by a factor of 45 over that of random-network single-walled carbon nanotubes.

[1]  T. Sugii,et al.  Scaling-parameter-dependent model for subthreshold swing S in double-gate SOI MOSFET's , 1994, IEEE Electron Device Letters.

[2]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[3]  Nagel,et al.  Contact line deposits in an evaporating drop , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[5]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[6]  A. Buldum,et al.  Contact resistance between carbon nanotubes , 2000, cond-mat/0005523.

[7]  O. Zhou,et al.  Self‐Assembly of Carbon Nanotubes , 2002 .

[8]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[9]  Supriyo Datta,et al.  Metal–insulator–semiconductor electrostatics of carbon nanotubes , 2002 .

[10]  Short-channel like effects in Schottky barrier carbon nanotube field-effect transistors , 2002, Digest. International Electron Devices Meeting,.

[11]  Moongyu Jang,et al.  Simulation of Schottky barrier tunnel transistor using simple boundary condition , 2003 .

[12]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[13]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[14]  Electrostatics of nanowire transistors , 2003 .

[15]  Wahyu Setyawan,et al.  Nanotube electronics: Large-scale assembly of carbon nanotubes , 2003, Nature.

[16]  Jing Guo,et al.  Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .

[17]  Adam T. Woolley,et al.  Directional Orientation of Carbon Nanotubes on Surfaces Using a Gas Flow Cell , 2004 .

[18]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[19]  Ya‐Ping Sun,et al.  Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[20]  Eric S. Snow,et al.  Simple Route to Large-Scale Ordered Arrays of Liquid-Deposited Carbon Nanotubes , 2004 .

[21]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[22]  Hyunhyub Ko,et al.  Nanotube surface arrays: weaving, bending, and assembling on patterned silicon. , 2004, Physical review letters.

[23]  J. Murthy,et al.  Percolating conduction in finite nanotube networks. , 2005, Physical review letters.

[24]  H. Dai,et al.  High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. , 2004, Nano letters.

[25]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[26]  Hyunhyub Ko,et al.  Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors. , 2006, Nano letters.

[27]  Michael Rapp,et al.  Thin Films of Metallic Carbon Nanotubes Prepared by Dielectrophoresis , 2006 .

[28]  Minbaek Lee,et al.  Selective adsorption and alignment behaviors of double- and multiwalled carbon nanotubes on bare Au and SiO2 surfaces. , 2006, The journal of physical chemistry. B.

[29]  John A Rogers,et al.  In situ deposition and patterning of single-walled carbon nanotubes by laminar flow and controlled flocculation in microfluidic channels. , 2006, Angewandte Chemie.

[30]  Jayathi Y. Murthy,et al.  Theory of transfer characteristics of nanotube network transistors , 2006 .

[31]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[32]  George C Schatz,et al.  Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  L. Limat,et al.  Moving contact lines of a colloidal suspension in the presence of drying. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[34]  Minbaek Lee,et al.  Directed-assembly of single-walled carbon nanotubes using self-assembled monolayer patterns comprising conjugated molecular wires , 2006, Nanotechnology.

[35]  Arvind Kumar,et al.  Silicon CMOS devices beyond scaling , 2006, IBM J. Res. Dev..

[36]  F. Léonard Crosstalk between nanotube devices: contact and channel effects , 2006, cond-mat/0602006.

[37]  C. Sah,et al.  Accuracy of Surface-Potential-Based Long–Wide-Channel Thick-Base MOS Transistor Models , 2007, IEEE Transactions on Electron Devices.

[38]  M. Strano,et al.  Nanometer positioning, parallel alignment, and placement of single anisotropic nanoparticles using hydrodynamic forces in cylindrical droplets. , 2007, Nano letters.

[39]  Li Zhang,et al.  Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. , 2007, Journal of the American Chemical Society.

[40]  H. Wong,et al.  Modeling and Analysis of Planar-Gate Electrostatic Capacitance of 1-D FET With Multiple Cylindrical Conducting Channels , 2007, IEEE Transactions on Electron Devices.

[41]  R. Nicholas,et al.  Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. , 2007, Nature nanotechnology.

[42]  Charles M Lieber,et al.  Large-area blown bubble films of aligned nanowires and carbon nanotubes. , 2007, Nature nanotechnology.

[43]  J. Rogers,et al.  Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. , 2007, Nano letters.

[44]  Phaedon Avouris,et al.  Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. , 2008, ACS nano.

[45]  K. Suh,et al.  Capillarity-driven fluidic alignment of single-walled carbon nanotubes in reversibly bonded nanochannels. , 2008, Small.

[46]  Jun Long Lim,et al.  Self‐Organization of Ink‐jet‐Printed Triisopropylsilylethynyl Pentacene via Evaporation‐Induced Flows in a Drying Droplet , 2008 .

[47]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[48]  Yasumitsu Miyata,et al.  Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. , 2009, Nano letters.

[49]  S. Barman,et al.  Lyotropic liquid-crystalline solutions of high-concentration dispersions of single-walled carbon nanotubes with conjugated polymers. , 2009, Small.

[50]  A. Sokolov,et al.  Self-sorted nanotube networks on polymer dielectrics for low-voltage thin-film transistors. , 2009, Nano letters.

[51]  John J Boland,et al.  Electrical connectivity in single-walled carbon nanotube networks. , 2009, Nano letters.

[52]  H. Kataura,et al.  Ink-Jet Printing of a Single-Walled Carbon Nanotube Thin Film Transistor , 2009 .

[53]  S. Khondaker,et al.  Solution processed large area field effect transistors from dielectrophoreticly aligned arrays of carbon nanotubes , 2008, 0812.4828.

[54]  I. Ivanov,et al.  Separation of junction and bundle resistance in single wall carbon nanotube percolation networks by impedance spectroscopy , 2010 .

[55]  Yasumitsu Miyata,et al.  Tunable Carbon Nanotube Thin‐Film Transistors Produced Exclusively via Inkjet Printing , 2010, Advanced materials.

[56]  Peter John Burke,et al.  High-performance semiconducting nanotube inks: progress and prospects. , 2011, ACS nano.

[57]  Zhenan Bao,et al.  Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. , 2011, Nature communications.

[58]  Kang L. Wang,et al.  Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. , 2011, Nano letters.

[59]  Hongsik Park,et al.  Carbon nanotube thin film transistors on flexible substrates , 2011 .

[60]  Jinsoo Noh,et al.  Integrable single walled carbon nanotube (SWNT) network based thin film transistors using roll-to-roll gravure and inkjet , 2011 .

[61]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[62]  Chongwu Zhou,et al.  Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. , 2011, Nano letters.

[63]  Paul Stokes,et al.  Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. , 2011, ACS nano.

[64]  Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties. , 2011, ACS nano.

[65]  Andrew G. Gillies,et al.  Carbon nanotube active-matrix backplanes for conformal electronics and sensors. , 2011, Nano letters.

[66]  W. Haensch,et al.  High-density integration of carbon nanotubes via chemical self-assembly. , 2012, Nature nanotechnology.

[67]  A. Niknejad,et al.  Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. , 2012, Nano letters.

[68]  H. Lee,et al.  Highly effective separation of semiconducting carbon nanotubes verified via short-channel devices fabricated using dip-pen nanolithography. , 2012, ACS nano.

[69]  Zhenan Bao,et al.  Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks. , 2012, ACS nano.

[70]  H. Dai,et al.  Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. , 2012, Journal of the American Chemical Society.

[71]  Z. Bao,et al.  A review of fabrication and applications of carbon nanotube film-based flexible electronics. , 2013, Nanoscale.

[72]  Self-assembly of semiconducting single-walled carbon nanotubes into dense, aligned rafts. , 2013, Small.

[73]  Tobin J Marks,et al.  Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly. , 2013, Small.

[74]  W. Haensch,et al.  Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. , 2013, Nature nanotechnology.

[75]  Zhenan Bao,et al.  Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers. , 2014, ACS applied materials & interfaces.

[76]  G. Tulevski,et al.  Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch , 2014, Nature Communications.

[77]  Ghada I. Koleilat,et al.  High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors. , 2014, ACS nano.

[78]  Transition from stripe-like patterns to a particulate film using driven evaporating menisci. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[79]  M. Loi,et al.  Carbon Nanotube Network Ambipolar Field‐Effect Transistors with 108 On/Off Ratio , 2014, Advanced materials.

[80]  F. Léonard,et al.  Etching of surfactant from solution-processed, type-separated carbon nanotubes and impact on device behavior. , 2014, ACS nano.

[81]  H. Dai,et al.  Top‐Down Patterning and Self‐Assembly for Regular Arrays of Semiconducting Single‐Walled Carbon Nanotubes , 2014, Advanced materials.

[82]  Christopher J. Tassone,et al.  Solvent effects on polymer sorting of carbon nanotubes with applications in printed electronics. , 2015, Small.