Effect of size on mechanical behavior of Au pillars by molecular dynamics study

[1]  K. M. Liew,et al.  Compressive mechanical behavior of Au nanowires , 2010 .

[2]  Zi-Xing Lu,et al.  Atomistic simulation on size-dependent yield strength and defects evolution of metal nanowires , 2009 .

[3]  Blythe G. Clark,et al.  Size effect on strength and strain hardening of small-scale [111] nickel compression pillars , 2008 .

[4]  S. Mao,et al.  Alternating starvation of dislocations during plastic yielding in metallic nanowires , 2008 .

[5]  Andrew M Minor,et al.  Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. , 2008, Nature materials.

[6]  Ting Zhu,et al.  Temperature and strain-rate dependence of surface dislocation nucleation. , 2008, Physical review letters.

[7]  J. Greer,et al.  Size dependence in mechanical properties of gold at the micron scale in the absence of strain gradients , 2007 .

[8]  D. Srolovitz,et al.  Atomistic simulation of the deformation of gold nanopillars , 2007 .

[9]  C. A. Volkert,et al.  Size effects in the deformation of sub-micron Au columns , 2006 .

[10]  H. P. Lee,et al.  Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires , 2006, Nanotechnology.

[11]  J. Greer,et al.  Nanoscale gold pillars strengthened through dislocation starvation , 2006 .

[12]  A. Needleman,et al.  Size effects in uniaxial deformation of single and polycrystals: a discrete dislocation plasticity analysis , 2006 .

[13]  C. Schuh,et al.  Determining the activation energy and volume for the onset of plasticity during nanoindentation , 2006 .

[14]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the sub-micron scale , 2005 .

[15]  고성현,et al.  Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석 , 2004 .

[16]  K. Gall,et al.  Yield Strength Asymmetry in Metal Nanowires , 2004 .

[17]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[18]  Martin L. Dunn,et al.  Atomistic simulations of the yielding of gold nanowires , 2004 .

[19]  Min Zhou,et al.  Size and Strain Rate Effects in Tensile Deformation of CU Nanowires , 2003 .

[20]  Huajian Gao,et al.  A finite deformation theory of strain gradient plasticity , 2002 .

[21]  Steven J. Plimpton,et al.  LENGTH SCALE AND TIME SCALE EFFECTS ON THE PLASTIC FLOW OF FCC METALS , 2001 .

[22]  J. Kang,et al.  Mechanical deformation study of copper nanowire using atomistic simulation , 2001 .

[23]  Huajian Gao,et al.  Strain gradient plasticity , 2001 .

[24]  R. Komanduria,et al.  Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel , 2001 .

[25]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[26]  A Hosphorylation,et al.  This work was supported by the National Natural Science Foundation of China(No.39570153) , 1998 .

[27]  Y. W. Zhang,et al.  The effect of thermal activation on dislocation processes at an atomistic crack tip , 1995 .

[28]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[29]  Yoji Shibutani,et al.  Molecular dynamics study of crack processes associated with dislocation nucleated at the tip , 1994 .

[30]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[31]  John R. Rice,et al.  The activation energy for dislocation nucleation at a crack , 1994 .

[32]  Sidney Yip,et al.  Atomic‐level stress in an inhomogeneous system , 1991 .

[33]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[34]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[35]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[36]  V. Vítek,et al.  Structural defects in amorphous solids A computer simulation study , 1980 .