Partially Adaptive Estimation of Regression Models via the Generalized T Distribution

This paper considers M-estimators of regression parameters that make use of a generalized functional form for the disturbance distribution. The family of distributions considered is the generalized t (GT), which includes the power exponential or Box-Tiao, normal, Laplace, and t distributions as special cases. The corresponding influence function is bounded and redescending for finite “degrees of freedom.” The regression estimators considered are those that maximize the GT quasi-likelihood, as well as one-step versions. Estimators of the parameters of the GT distribution and the effect of such estimates on the asymptotic efficiency of the regression estimates are discussed. We give a minimum-distance interpretation of the choice of GT parameter estimate that minimizes the asymptotic variance of the regression parameters.

[1]  J. Wolfowitz The Minimum Distance Method , 1957 .

[2]  Michel Loève,et al.  Probability Theory I , 1977 .

[3]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[4]  R. Zeckhauser,et al.  Linear Regression with Non-Normal Error Terms , 1970 .

[5]  R. Hogg Adaptive Robust Procedures: A Partial Review and Some Suggestions for Future Applications and Theory , 1974 .

[6]  P. Bickel One-Step Huber Estimates in the Linear Model , 1975 .

[7]  Rudolf Beran Adaptive estimates for autoregressive processes , 1976 .

[8]  R. Beran Minimum Hellinger distance estimates for parametric models , 1977 .

[9]  H. White,et al.  NONLINEAR REGRESSION ON CROSS-SECTION DATA , 1980 .

[10]  Richard E. Quandt,et al.  Econometric modelling with non-normal disturbances , 1981 .

[11]  P. Bickel On Adaptive Estimation , 1982 .

[12]  Spyros Missiakoulis Sargan densities which one , 1983 .

[13]  H. Kelejian,et al.  The Structure of Simultaneous Equation Estimators: A Generalization towards Nonnormal Disturbances , 1984 .

[14]  James B. McDonald,et al.  Some Generalized Functions for the Size Distribution of Income , 1984 .

[15]  Charles F. Manski,et al.  Adaptive estimation of non–linear regression models , 1984 .

[16]  H. White,et al.  A Unified Theory of Consistent Estimation for Parametric Models , 1985, Econometric Theory.

[17]  D. Pollard New Ways to Prove Central Limit Theorems , 1985, Econometric Theory.

[18]  Benedikt M. Pötscher,et al.  A class of partially adaptive one-step m-estimators for the non-linear regression model with dependent observations , 1986 .

[19]  Whitney K. Newey,et al.  Adaptive estimation of regression models via moment restrictions , 1988 .