A coloring-book approach to finding coordination sequences.
暂无分享,去创建一个
[1] P. D. L. Harpe,et al. Séries de croissance et séries d'Ehrhart associées aux réseaux de racines , 1997 .
[2] M. O'Keefe,et al. Plane nets in crystal chemistry , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[3] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[4] David B. A. Epstein,et al. The Use of Knuth-Bendix Methods to Solve the Word Problem in Automatic Groups , 1991, J. Symb. Comput..
[5] P. Harpe,et al. Conjugacy growth series of some infinitely generated groups , 2016, 1603.07943.
[6] M. Benson. Growth series of finite extensions of ℤn are rational , 1983 .
[7] J. Eon. Topological density of lattice nets. , 2013, Acta crystallographica. Section A, Foundations of crystallography.
[8] J. Eon. Topological features in crystal structures: a quotient graph assisted analysis of underlying nets and their embeddings. , 2016, Acta crystallographica. Section A, Foundations and advances.
[9] G. C. Shephard,et al. Tilings and Patterns , 1990 .
[10] Chaim Goodman-Strauss,et al. Regular production systems and triangle tilings , 2009, Theor. Comput. Sci..
[11] A. P. Shevchenko,et al. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro , 2014 .
[12] N. Sloane,et al. Algebraic Description of Coordination Sequences and Exact TopologicalDensities for Zeolites , 1996 .
[13] Neil J. A. Sloane,et al. Low–dimensional lattices. VII. Coordination sequences , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[14] A. Shutov. The Number of Words of a Given Length in the Planar Crystallographic Groups , 2005 .
[15] M. O'keeffe,et al. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.
[16] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[17] J. Eon. Algebraic determination of generating functions for coordination sequences in crystal structures. , 2002, Acta crystallographica. Section A, Foundations of crystallography.
[18] D. Knuth,et al. Simple Word Problems in Universal Algebras , 1983 .
[19] Richard L Gregory,et al. Zap! , 1991, IEEE Spectrum.
[20] Branko Grünbaum,et al. Tilings by Regular Polygons , 1977 .
[21] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[22] Coordination sequences for root lattices and related graphs , 1997, cond-mat/9706122.
[23] J. Eon,et al. Infinite geodesic paths and fibers, new topological invariants in periodic graphs. , 2007, Acta crystallographica. Section A, Foundations of crystallography.
[24] J. Conway,et al. The Symmetries of Things , 2008 .
[25] La Harpe,et al. Topics in Geometric Group Theory , 2000 .
[26] D. L. Johnson. Presentations of groups , 1976 .
[27] Jean-Guillaume Eon,et al. Symmetry and Topology: The 11 Uninodal Planar Nets Revisited , 2018, Symmetry.
[28] H. Coxeter,et al. Generators and relations for discrete groups , 1957 .
[29] J. Eon. Topological density of nets: a direct calculation. , 2004, Acta crystallographica. Section A, Foundations of crystallography.
[30] Darrah Chavey,et al. Tilings by regular polygons—II: A catalog of tilings , 1989 .
[31] M. O'keeffe,et al. Coordination sequences for lattices , 1995 .