Expression, purification and crystallization of the SARS-CoV macro domain

The SARS-CoV macro domain was expressed, purified and crystallized. Selenomethionine-labelled crystals diffracted to 1.8 Å resolution.

[1]  Kin Moy,et al.  Structural Basis of Severe Acute Respiratory Syndrome Coronavirus ADP-Ribose-1″-Phosphate Dephosphorylation by a Conserved Domain of nsP3 , 2005, Structure.

[2]  W. Filipowicz,et al.  ADP-Ribose-1"-Monophosphatase: a Conserved Coronavirus Enzyme That Is Dispensable for Viral Replication in Tissue Culture , 2005, Journal of Virology.

[3]  Sonia Longhi,et al.  VaZyMolO: a tool to define and classify modularity in viral proteins. , 2005, The Journal of general virology.

[4]  E. Phizicky,et al.  A highly specific phosphatase that acts on ADP-ribose 1″-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae , 2005, Nucleic acids research.

[5]  M. Bycroft,et al.  The macro domain is an ADP‐ribose binding module , 2004, The EMBO journal.

[6]  A. Gorbalenya,et al.  Severe Acute Respiratory Syndrome Coronavirus Phylogeny: toward Consensus , 2004, Journal of Virology.

[7]  Y. Guan,et al.  Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage , 2003, Journal of Molecular Biology.

[8]  M. Bycroft,et al.  The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. , 2003, Journal of molecular biology.

[9]  Renaud Vincentelli,et al.  A medium-throughput crystallization approach. , 2002, Acta crystallographica. Section D, Biological crystallography.

[10]  S. Fields,et al.  A biochemical genomics approach for identifying genes by the activity of their products. , 1999, Science.

[11]  D. Haburchak,et al.  Topley and Wilson's Microbiology and Microbial Infections , 1999 .

[12]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[13]  A Klug,et al.  Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure. , 1995, Journal of molecular biology.

[14]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[15]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[16]  G. Nemerow,et al.  Strategies in the crystallization of glycoproteins and protein complexes , 1992 .

[17]  M. Zulauf,et al.  Light scattering of proteins as a criterion for crystallization , 1992 .

[18]  Eugene V. Koonin,et al.  Putative papain‐related thiol proteases of positive‐strand RNA viruses Identification of rubi‐ and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi‐, α‐ and coronaviruses , 1991, FEBS Letters.

[19]  Sung-Hou Kim,et al.  Sparse matrix sampling: a screening method for crystallization of proteins , 1991 .

[20]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[21]  A. Gorbalenya,et al.  Topley and Wilson's Microbiology and Microbial Infections , 2005 .

[22]  J. Ziebuhr The Coronavirus Replicase , 2005, Current topics in microbiology and immunology.

[23]  Peer Bork,et al.  SMART 4.0: towards genomic data integration , 2004, Nucleic Acids Res..

[24]  S. Doublié [29] Preparation of selenomethionyl proteins for phase determination. , 1997, Methods in enzymology.

[25]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Translation Functions Biological Crystallography Likelihood-enhanced Fast Translation Functions , 2022 .