Stackelberg solutions for fuzzy random two-level linear programming through probability maximization with possibility

This paper considers Stackelberg solutions for decision making problems in hierarchical organizations under fuzzy random environments. Taking into account vagueness of judgments of decision makers, fuzzy goals are introduced into the formulated fuzzy random two-level linear programming problems. On the basis of the possibility and necessity measures that each objective function fulfills the corresponding fuzzy goal, together with the introduction of probability maximization criterion in stochastic programming, we propose new two-level fuzzy random decision making models which maximize the probabilities that the degrees of possibility and necessity are greater than or equal to certain values. Through the proposed models, it is shown that the original two-level linear programming problems with fuzzy random variables can be transformed into deterministic two-level linear fractional programming problems. For the transformed problems, extended concepts of Stackelberg solutions are defined and computational methods are also presented. A numerical example is provided to illustrate the proposed methods.

[1]  G. Anandalingam,et al.  A penalty function approach for solving bi-level linear programs , 1993, J. Glob. Optim..

[2]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[3]  Berç Rustem,et al.  Parametric global optimisation for bilevel programming , 2007, J. Glob. Optim..

[4]  M. K. Luhandjula Fuzzy stochastic linear programming: Survey and future research directions , 2006, Eur. J. Oper. Res..

[5]  R. Kruse,et al.  Statistics with vague data , 1987 .

[6]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[7]  ColsonBenoît,et al.  A Trust-Region Method for Nonlinear Bilevel Programming , 2005 .

[8]  Baoding Liu,et al.  Fuzzy random dependent-chance programming , 2001, IEEE Trans. Fuzzy Syst..

[9]  Wang Guangyuan,et al.  Linear programming with fuzzy random variable coefficients , 1993 .

[10]  Ichiro Nishizaki,et al.  INTERACTIVE DECISION MAKING USING POSSIBILITY AND NECESSITY MEASURES FOR A FUZZY RANDOM MULTIOBJECTIVE 0–1 PROGRAMMING PROBLEM , 2006, Cybern. Syst..

[11]  M. K. Luhandjula Fuzziness and randomness in an optimization framework , 1996, Fuzzy Sets Syst..

[12]  E. E. Ammar,et al.  On solutions of fuzzy random multiobjective quadratic programming with applications in portfolio problem , 2008, Inf. Sci..

[13]  Herminia I. Calvete,et al.  A note on 'bilevel linear fractional programming problem' , 2004, Eur. J. Oper. Res..

[14]  Masatoshi Sakawa,et al.  Fuzzy random bottleneck spanning tree problems using possibility and necessity measures , 2004, Eur. J. Oper. Res..

[15]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[16]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[17]  Mahyar A. Amouzegar,et al.  Determining optimal pollution control policies: An application of bilevel programming , 1999, Eur. J. Oper. Res..

[18]  Dan A. Ralescu,et al.  Overview on the development of fuzzy random variables , 2006, Fuzzy Sets Syst..

[19]  Heinrich J. Rommelfanger,et al.  A general concept for solving linear multicriteria programming problems with crisp, fuzzy or stochastic values , 2007, Fuzzy Sets Syst..

[20]  Miles G. Nicholls,et al.  The application of non-linear bi-level programming to the aluminium industry , 1996, J. Glob. Optim..

[21]  Jonathan F. Bard,et al.  Bundle Trust-Region Algorithm for Bilinear Bilevel Programming , 2001 .

[22]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[23]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[24]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[25]  Masatoshi Sakawa,et al.  Large Scale Interactive Fuzzy Multiobjective Programming , 2000 .

[26]  I. M. Stancu-Minasian,et al.  Stochastic Programming: with Multiple Objective Functions , 1985 .

[27]  Yue Zhang,et al.  The theory of fuzzy stochastic processes , 1992 .

[28]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[29]  Yian-Kui Liu,et al.  Fuzzy Random Variables: A Scalar Expected Value Operator , 2003, Fuzzy Optim. Decis. Mak..

[30]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[31]  Marcia Helena Costa Fampa,et al.  Bilevel optimization applied to strategic pricing in competitive electricity markets , 2008, Comput. Optim. Appl..

[32]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[33]  Ichiro Nishizaki,et al.  A fuzzy random multiob jective 0-1 programming based on the expectation optimization model using possibility and necessity measures , 2004, Math. Comput. Model..

[34]  Ichiro Nishizaki,et al.  Stackelberg Solutions to Two-Level Linear Programming Problems with Random Variable Coefficients , 2003 .

[35]  Ichiro Nishizaki,et al.  A Possibilistic and Stochastic Programming Approach to Fuzzy Random MST Problems , 2005, IEICE Trans. Inf. Syst..

[36]  Christodoulos A. Floudas,et al.  Global Optimization of Nonlinear Bilevel Programming Problems , 2001, J. Glob. Optim..

[37]  Ichiro Nishizaki,et al.  COMPUTATIONAL METHODS THROUGH GENETIC ALGORITHMS FOR OBTAINING STACKELBERG SOLUTIONS TO TWO-LEVEL MIXED ZERO-ONE PROGRAMMING PROBLEMS , 2000, Cybern. Syst..

[38]  Ichiro Nishizaki,et al.  Interactive multiobjective fuzzy random linear programming: Maximization of possibility and probability , 2008, Eur. J. Oper. Res..

[39]  Masatoshi Sakawa,et al.  Genetic Algorithms and Fuzzy Multiobjective Optimization , 2001 .

[40]  J. Cruz,et al.  On the Stackelberg strategy in nonzero-sum games , 1973 .

[41]  I. M. Stancu-Minasian,et al.  Overview of Different Approaches for Solving Stochastic Programming Problems with Multiple Objective Functions , 1990 .

[42]  Wang Guangyuan,et al.  On fuzzy random linear programming , 1994 .

[43]  Seyed Jafar Sadjadi,et al.  A probabilistic bi-level linear multi-objective programming problem to supply chain planning , 2007, Appl. Math. Comput..

[44]  Ichiro Nishizaki,et al.  Cooperative and Noncooperative Multi-Level Programming , 2009 .

[45]  Hiroaki Ishii,et al.  A STUDY ON FUZZY RANDOM PORTFOLIO SELECTION PROBLEMS BASED ON POSSIBILITY AND NECESSITY MEASURES , 2005 .

[46]  Madan M. Gupta,et al.  On fuzzy stochastic optimization , 1996, Fuzzy Sets Syst..

[47]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..

[48]  Patrice Marcotte,et al.  A Trust-Region Method for Nonlinear Bilevel Programming: Algorithm and Computational Experience , 2005, Comput. Optim. Appl..

[49]  M. Sakawa,et al.  Stackelberg Solutions to Multiobjective Two-Level Linear Programming Problems , 1999 .

[50]  Jiuping Xu,et al.  Multi-objective decision making model under fuzzy random environment and its application to inventory problems , 2008, Inf. Sci..

[51]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..