Hamiltonization of Solids of Revolution Through Reduction

In this paper, we study the relation between conserved quantities of nonholonomic systems and the hamiltonization problem employing the geometric methods of Balseiro (Arch Ration Mech Anal 214:453–501, 2014) and Balseiro and Garcia-Naranjo (Arch Ration Mech Anal 205(1):267–310, 2012). We illustrate the theory with classical examples describing the dynamics of solids of revolution rolling without sliding on a plane. In these cases, using the existence of two conserved quantities we obtain, by means of gauge transformations and symmetry reduction, genuine Poisson brackets describing the reduced dynamics.

[1]  D. D. Diego,et al.  Dirac brackets in constrained dynamics , 1999 .

[2]  Edward John Routh,et al.  The elementary part of A treatise on the dynamics of a system of rigid bodies , 2009 .

[3]  Charles-Michel Marle,et al.  Various approaches to conservative and nonconservative nonholonomic systems , 1998 .

[4]  P. Balseiro,et al.  Reduction of nonholonomic systems in two stages and Hamiltonization , 2014, 1409.0456.

[5]  Charles-Michel Marle,et al.  Reduction of constrained mechanical systems and stability of relative equilibria , 1995 .

[6]  Not-quite-Hamiltonian Reduction , 2014, 1412.1500.

[7]  The Jacobiator of Nonholonomic Systems and the Geometry of Reduced Nonholonomic Brackets , 2013, 1301.1091.

[8]  REDUCTION OF ALMOST POISSON BRACKETS AND HAMILTONIZATION OF THE CHAPLYGIN SPHERE , 2010 .

[9]  Nicola Sansonetto,et al.  Gauge conservation laws and the momentum equation in nonholonomic mechanics , 2008 .

[10]  A. Kilin,et al.  Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra? , 2014, 1401.3630.

[11]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[12]  A. Giacobbe,et al.  On the number of weakly Noetherian constants of motion of nonholonomic systems , 2010 .

[13]  T. Mestdag,et al.  A generalization of Chaplygin’s Reducibility Theorem , 2009, 0909.4018.

[14]  A. Bloch,et al.  Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization , 2011, 1102.4361.

[15]  P. Balseiro,et al.  Gauge Transformations, Twisted Poisson Brackets and Hamiltonization of Nonholonomic Systems , 2011, 1104.0880.

[16]  J. Sniatycki Nonholonomic Noether theorem and reduction of symmetries , 1998 .

[17]  B. Jovanović Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems , 2016, 1609.01965.

[18]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[19]  Alexey V. Borisov,et al.  Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems , 2008 .

[20]  Yuri N. Fedorov 2 1 2 A ug 2 00 3 Nonholonomic LR systems as Generalized Chaplygin systems with an Invariant Measure and Geodesic Flows on Homogeneous Spaces ∗ , 2003 .

[21]  Francesco Fassò,et al.  Conservation of ‘Moving’ Energy in Nonholonomic Systems with Affine Constraints and Integrability of Spheres on Rotating Surfaces , 2015, J. Nonlinear Sci..

[22]  Jerrold E. Marsden,et al.  Poisson reduction for nonholonomic mechanical systems with symmetry , 1998 .

[23]  Alexey V. Borisov,et al.  The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere , 2013 .

[24]  I. Bizyaev,et al.  On the Routh sphere problem , 2012, 1210.7903.

[25]  Dmitry V. Zenkov,et al.  Linear conservation laws of nonholonomic systems with symmetry , 2003 .

[26]  M. Crampin,et al.  The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem , 2011, 1101.3153.

[27]  Poisson Geometry with a 3-Form Background , 2001, math/0107133.

[28]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[29]  Richard Cushman,et al.  Global Aspects of Classical Integrable Systems , 2004 .

[30]  Jair Koiller,et al.  Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization , 2005 .

[31]  Gauge Momenta as Casimir Functions of Nonholonomic Systems , 2016, 1610.05618.

[32]  Алексей Владимирович Борисов,et al.  Гамильтоновость задачи Чаплыгина о качении шара@@@Chaplygin's Ball Rolling Problem Is Hamiltonian , 2001 .

[33]  Алексей Владимирович Борисов,et al.  Неголономная динамика и пуассонова геометрия@@@Non-holonomic dynamics and Poisson geometry , 2014 .

[34]  P. Balseiro,et al.  A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries , 2015, 1510.08314.

[35]  Poisson structures for reduced non-holonomic systems , 2004, math-ph/0401054.

[36]  Yuri N. Fedorov,et al.  Nonholonomic LR Systems as Generalized Chaplygin Systems with an Invariant Measure and Flows on Homogeneous Spaces , 2003, J. Nonlinear Sci..

[37]  Frans Cantrijn,et al.  On almost-Poisson structures in nonholonomic mechanics , 1999 .

[38]  van der Arjan Schaft,et al.  On the Hamiltonian Formulation of Nonholonomic Mechanical Systems , 1994 .

[39]  A. Borisov,et al.  Non-holonomic dynamics and Poisson geometry , 2014 .

[40]  Bozidar Jovanovic,et al.  Hamiltonization and Integrability of the Chaplygin Sphere in ℝn , 2009, J. Nonlinear Sci..

[41]  Richard Cushman Routh's sphere , 1997 .

[42]  Larry Bates,et al.  Examples of gauge conservation laws in nonholonomic systems , 1996 .