Early-Universe constraints on dark matter-baryon scattering and their implications for a global 21 cm signal

We present and compare several cosmological constraints on the cross section for elastic scattering between dark matter (DM) and baryons, for cross sections with a range of power-law dependences on the DM-baryon relative velocity $v$, especially focusing on the case of $\sigma \propto v^{-4}$. We study constraints spanning a wide range of epochs in cosmological history, from pre-recombination distortions to the blackbody spectrum and anisotropies of the cosmic microwave background (CMB), to modifications to the intergalactic medium temperature and the resulting 21cm signal, and discuss the allowed signals in the latter channels given the constraints from the former. We improve previous constraints on DM-baryon scattering from the CMB anisotropies, demonstrate via principal component analysis that the effect on the CMB can be written as a simple function of DM mass, and map out the redshifts dominating this signal. We show that given high-redshift constraints on DM-baryon scattering, a $v^{-4}$ scaling of the cross section for light DM would be sufficient to explain the deep 21cm absorption trough recently claimed by the EDGES experiment, if 100% of the DM scatters with baryons. For millicharged DM models proposed to explain the observation, where only a small fraction of the DM interacts, we estimate that a PIXIE-like future experiment measuring CMB spectral distortion could test the relevant parameter space.

[1]  M. Viel,et al.  Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.

[2]  Hu,et al.  Thermalization constraints and spectral distortions for massive unstable relic particles. , 1993, Physical review letters.

[3]  Edward J. Wollack,et al.  Cosmological parameters from pre-planck cosmic microwave background measurements , 2013 .

[4]  A. Loeb,et al.  A small amount of mini-charged dark matter could cool the baryons in the early Universe , 2018, Nature.

[5]  G. Holder,et al.  Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn , 2018, 1802.07432.

[6]  M. Halpern,et al.  The Atacama Cosmology Telescope: likelihood for small-scale CMB data , 2013, 1301.0776.

[7]  David N. Spergel,et al.  The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data , 2013, 1301.1037.

[8]  J. Lesgourgues,et al.  Cosmological constraints on exotic injection of electromagnetic energy , 2016, 1610.10051.

[9]  S. Sarkar,et al.  Cosmic microwave background anisotropy in the decaying neutrino cosmology , 1998 .

[10]  Steven Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .

[11]  L. Verde,et al.  Signatures of primordial black holes as seeds of supermassive black holes , 2017, 1712.01311.

[12]  MON , 2020, Catalysis from A to Z.

[13]  Lectures on Cosmology : Accelerated Expansion of the Universe , 2010 .

[14]  T. Slatyer,et al.  General constraints on dark matter decay from the cosmic microwave background , 2016, 1610.06933.

[15]  Cora Dvorkin,et al.  Probing sub-GeV dark matter-baryon scattering with cosmological observables , 2018, Physical Review D.

[16]  W. Marsden I and J , 2012 .

[17]  K. Zurek,et al.  Turning off the lights: How dark is dark matter? , 2010, 1011.2907.

[18]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[19]  J. Chluba Distinguishing different scenarios of early energy release with spectral distortions of the cosmic microwave background , 2013, 1304.6121.

[20]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[21]  E. Kovetz,et al.  Heating of baryons due to scattering with dark matter during the dark ages , 2015, 1509.00029.

[22]  A. Loeb,et al.  Constraints on dark matter-baryon scattering from the temperature evolution of the intergalactic medium , 2017, 1708.08923.

[23]  M. Kamionkowski,et al.  Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions. , 2015, Physical review letters.

[24]  Kiwoon Choi,et al.  Constraining dark photon model with dark matter from CMB spectral distortions , 2017, 1701.01221.

[25]  Kris Sigurdson,et al.  Dark-matter electric and magnetic dipole moments , 2004 .

[26]  M. Kamionkowski,et al.  Erratum: Dark-matter electric and magnetic dipole moments [Phys. Rev. D 70, 083501 (2004)] , 2006 .

[27]  N. Padmanabhan,et al.  Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects , 2005, astro-ph/0503486.

[28]  Robert J. Scherrer,et al.  Cosmic microwave background and large scale structure limits on the interaction between dark matter and baryons , 2002, astro-ph/0202496.

[29]  F. Iocco,et al.  CMB constraints on dark matter models with large annihilation cross section , 2009, 0905.0003.

[30]  Christopher Hirata,et al.  Relative velocity of dark matter and baryonic fluids and the formation of the first structures , 2010, 1005.2416.

[31]  Spergel,et al.  Cosmological-parameter determination with microwave background maps. , 1996, Physical review. D, Particles and fields.

[32]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[33]  M. Halpern,et al.  The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations , 2011, 1105.2044.

[34]  Alan E. E. Rogers,et al.  An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.

[35]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[36]  T. Slatyer,et al.  Implications of a 21-cm signal for dark matter annihilation and decay , 2018, Physical Review D.

[37]  T. Slatyer Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results , 2015, 1506.03811.

[38]  Rennan Barkana,et al.  Possible interaction between baryons and dark-matter particles revealed by the first stars , 2018, Nature.

[39]  P. Meerburg,et al.  New light on 21 cm intensity fluctuations from the dark ages , 2013, 1312.4948.

[40]  M. McQuinn,et al.  Models of the Thermal Evolution of the Intergalactic Medium After Reionization , 2015, 1511.05992.

[41]  J. Brinkmann,et al.  The Linear Theory Power Spectrum from the Lyα Forest in the Sloan Digital Sky Survey , 2004, astro-ph/0407377.

[42]  K. Benabed,et al.  Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code , 2012, 1210.7183.

[43]  Cora Dvorkin,et al.  Constraining Dark Matter-Baryon Scattering with Linear Cosmology , 2013, 1311.2937.

[44]  D. J. Fixsen,et al.  The Cosmic Microwave Background spectrum from the full COBE FIRAS data set , 1996 .

[45]  T. Slatyer Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections , 2015, 1506.03812.

[46]  S. Dubovsky,et al.  Constraints on millicharged particles from Planck data , 2013, 1310.2376.

[47]  Particle decays during the cosmic dark ages , 2003, astro-ph/0310473.

[48]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[49]  D. Hooper,et al.  Severely Constraining Dark-Matter Interpretations of the 21-cm Anomaly. , 2018, Physical review letters.

[50]  Douglas P. Finkbeiner,et al.  CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch , 2009, 0906.1197.

[51]  L. Hui,et al.  Equation of state of the photoionized intergalactic medium , 1996, astro-ph/9612232.

[52]  K. Benabed,et al.  Conservative constraints on early cosmology with MONTE PYTHON , 2013 .

[53]  D. Finkbeiner,et al.  Searching for dark matter in the CMB: A compact parametrization of energy injection from new physics , 2011, 1109.6322.

[54]  Simone Ferraro,et al.  Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background. , 2015, Physical review letters.

[55]  Hu,et al.  Thermalization and spectral distortions of the cosmic background radiation. , 1993, Physical review. D, Particles and fields.

[56]  J. Silk,et al.  The Effects of dark matter-baryon scattering on redshifted 21 cm signals , 2014, 1408.2571.