暂无分享,去创建一个
[1] Gerhard J. Woeginger,et al. How * not * to solve a Sudoku , 2010, Oper. Res. Lett..
[2] Abbas Alhakim,et al. A Simple Combinatorial Algorithm for de Bruijn Sequences , 2010, Am. Math. Mon..
[3] Mike Krebs,et al. Mini-Sudokus and Groups , 2010 .
[4] Zoltán Kása,et al. On arc-disjoint Hamiltonian cycles in De Bruijn graphs , 2010, ArXiv.
[5] Zoltán Kása,et al. On the d-complexity of strings , 2010, ArXiv.
[6] Zoltán Kása,et al. Maximal Complexity of Finite Words , 2010, ArXiv.
[7] Rudi Penne,et al. A note on certain de Bruijn sequences with forbidden subsequences , 2010, Discret. Math..
[8] Reinhardt Euler,et al. On the completability of incomplete Latin squares , 2010, Eur. J. Comb..
[9] Cees H. Elzinga,et al. Complexity of Categorical Time Series , 2010 .
[10] John Lorch,et al. MUTUALLY ORTHOGONAL FAMILIES OF LINEAR SUDOKU SOLUTIONS , 2009, Journal of the Australian Mathematical Society.
[11] Weiguo Zhang,et al. An efficient implementation algorithm for generating de Bruijn sequences , 2009, Comput. Stand. Interfaces.
[12] J. Scott Provan,et al. Sudoku: Strategy versus Structure , 2009, Am. Math. Mon..
[13] Timothy G. Mattson,et al. Introduction to Concurrency in Programming Languages , 2009 .
[14] M. Erickson. Pearls of Discrete Mathematics , 2009 .
[15] Martín Matamala,et al. Minimum Eulerian circuits and minimum de Bruijn sequences , 2009, Discret. Math..
[16] Chungen Xu,et al. The Model and Algorithm to Estimate the Difficulty Levels of Sudoku Puzzles , 2009 .
[17] Chin-Chen Chang,et al. A Sudoku-based Secret Image Sharing Scheme with Reversibility (Invited Paper) , 2009, J. Commun..
[18] Ronald L. Rivest,et al. Introduction to Algorithms, third edition , 2009 .
[19] Torsten Sander,et al. Sudoku Graphs are Integral , 2009, Electron. J. Comb..
[20] T. Vis,et al. Sets of Mutually Orthogonal Sudoku Latin Squares , 2009 .
[21] G. Dahl. Permutation matrices related to Sudoku , 2009 .
[22] Todd K. Moon,et al. Sinkhorn Solves Sudoku , 2009, IEEE Transactions on Information Theory.
[23] Joshua N. Cooper,et al. The discrepancy of the lex-least de Bruijn sequence , 2009, Discret. Math..
[24] Richard Mollin,et al. Cryptography and Shift Registers , 2009 .
[25] Zhe Chen,et al. Heuristic Reasoning on Graph and Game Complexity of Sudoku , 2009, ArXiv.
[26] Emil R. Vaughan,et al. The Complexity of Constructing Gerechte Designs , 2009, Electron. J. Comb..
[27] Sven Rahmann,et al. Algorithms for subsequence combinatorics , 2008, Theor. Comput. Sci..
[28] Tristan Denley,et al. On a generalization of the Evans Conjecture , 2008, Discret. Math..
[29] Antal Iványi,et al. Growing perfect cubes , 2008, Discret. Math..
[30] Peter J. Cameron,et al. Sudoku, Gerechte Designs, Resolutions, Affine Space, Spreads, Reguli, and Hamming Codes , 2008, Am. Math. Mon..
[31] Peter Adams,et al. Completing Partial Latin Squares with Two Filled Rows and Two Filled Columns , 2008, Electron. J. Comb..
[32] Hossein Jowhari,et al. On Completing Latin Squares , 2007, STACS.
[33] Naoki Suehiro,et al. On perfect arrays , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[34] Gad M. Landau,et al. Sequence complexity profiles of prokaryotic genomic sequences: A fast algorithm for calculating linguistic complexity , 2002, Bioinform..
[35] Nikil D. Dutt,et al. System and architecture-level power reduction of microprocessor-based communication and multi-media applications , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).
[36] R. K. Shyamasundar,et al. Introduction to algorithms , 1996 .
[37] Alexander Russell,et al. Approximating Latin Square Extensions , 1996, Algorithmica.
[38] Bella Bose,et al. On the Number of Arc-Disjoint Hamiltonian Circuits in the de Bruijn Graph , 1993, Parallel Process. Lett..
[39] Venkat Subramaniam. Introduction to Concurrency , 1992 .
[40] A. D. Keedwell,et al. Latin Squares: New Developments in the Theory and Applications , 1991 .
[41] Antal Iványi,et al. Construction of infinite de Bruijn arrays , 1989, Discret. Appl. Math..
[42] G. Egorychev. Integral representation and the computation of combinatorial sums , 1984 .
[43] W. Worlton,et al. The Art of Computer Programming , 1968 .
[44] G. Szegö. Über Einige von S. Eamanujan Gestellte Aufgaben , 1928 .
[45] B. Bagchi,et al. Latin squares , 2012 .
[46] Antal Iványi,et al. Perfect hypercubes , 2011, Electron. Notes Discret. Math..
[47] A. Donald Keedwell,et al. Constructions of complete sets of orthogonal diagonal Sudoku squares , 2010, Australas. J Comb..
[48] J. F. Crook,et al. A Pencil-and-Paper Algorithm for Solving Sudoku Puzzles , 2009 .
[49] Lars-Daniel Öhman,et al. A note on completing latin squares , 2009, Australas. J Comb..
[50] Henri Casanova,et al. Parallel Algorithms , 2008 .
[51] A. Iványi,et al. Two-dimensional arrays with maximal complexity , 2006 .
[52] Skbastien FerenczP,et al. Complexity for finite factors of infinite , 1999 .
[53] Antal Iványi,et al. On the d-complexity of words , 1987 .
[54] Antal Iványi,et al. Processing of random sequences with priority , 1978, Acta Cybern..
[55] Edward G. Coffman,et al. A Combinatorial Problem Related to Interleaved Memory Systems , 1973, JACM.
[56] Herbert Hellerman,et al. Digital Computer System Principles , 1967 .
[57] Jun-Ming Xu,et al. Computers and Mathematics with Applications ( ) – Computers and Mathematics with Applications Feedback Numbers of De Bruijn Digraphs , 2022 .