Testing of random matrices

Let n be a positive integer and X = (xij)1 i;j n be an n n sized matrix of independent random variables having joint uniform dis- tribution

[1]  Gerhard J. Woeginger,et al.  How * not * to solve a Sudoku , 2010, Oper. Res. Lett..

[2]  Abbas Alhakim,et al.  A Simple Combinatorial Algorithm for de Bruijn Sequences , 2010, Am. Math. Mon..

[3]  Mike Krebs,et al.  Mini-Sudokus and Groups , 2010 .

[4]  Zoltán Kása,et al.  On arc-disjoint Hamiltonian cycles in De Bruijn graphs , 2010, ArXiv.

[5]  Zoltán Kása,et al.  On the d-complexity of strings , 2010, ArXiv.

[6]  Zoltán Kása,et al.  Maximal Complexity of Finite Words , 2010, ArXiv.

[7]  Rudi Penne,et al.  A note on certain de Bruijn sequences with forbidden subsequences , 2010, Discret. Math..

[8]  Reinhardt Euler,et al.  On the completability of incomplete Latin squares , 2010, Eur. J. Comb..

[9]  Cees H. Elzinga,et al.  Complexity of Categorical Time Series , 2010 .

[10]  John Lorch,et al.  MUTUALLY ORTHOGONAL FAMILIES OF LINEAR SUDOKU SOLUTIONS , 2009, Journal of the Australian Mathematical Society.

[11]  Weiguo Zhang,et al.  An efficient implementation algorithm for generating de Bruijn sequences , 2009, Comput. Stand. Interfaces.

[12]  J. Scott Provan,et al.  Sudoku: Strategy versus Structure , 2009, Am. Math. Mon..

[13]  Timothy G. Mattson,et al.  Introduction to Concurrency in Programming Languages , 2009 .

[14]  M. Erickson Pearls of Discrete Mathematics , 2009 .

[15]  Martín Matamala,et al.  Minimum Eulerian circuits and minimum de Bruijn sequences , 2009, Discret. Math..

[16]  Chungen Xu,et al.  The Model and Algorithm to Estimate the Difficulty Levels of Sudoku Puzzles , 2009 .

[17]  Chin-Chen Chang,et al.  A Sudoku-based Secret Image Sharing Scheme with Reversibility (Invited Paper) , 2009, J. Commun..

[18]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[19]  Torsten Sander,et al.  Sudoku Graphs are Integral , 2009, Electron. J. Comb..

[20]  T. Vis,et al.  Sets of Mutually Orthogonal Sudoku Latin Squares , 2009 .

[21]  G. Dahl Permutation matrices related to Sudoku , 2009 .

[22]  Todd K. Moon,et al.  Sinkhorn Solves Sudoku , 2009, IEEE Transactions on Information Theory.

[23]  Joshua N. Cooper,et al.  The discrepancy of the lex-least de Bruijn sequence , 2009, Discret. Math..

[24]  Richard Mollin,et al.  Cryptography and Shift Registers , 2009 .

[25]  Zhe Chen,et al.  Heuristic Reasoning on Graph and Game Complexity of Sudoku , 2009, ArXiv.

[26]  Emil R. Vaughan,et al.  The Complexity of Constructing Gerechte Designs , 2009, Electron. J. Comb..

[27]  Sven Rahmann,et al.  Algorithms for subsequence combinatorics , 2008, Theor. Comput. Sci..

[28]  Tristan Denley,et al.  On a generalization of the Evans Conjecture , 2008, Discret. Math..

[29]  Antal Iványi,et al.  Growing perfect cubes , 2008, Discret. Math..

[30]  Peter J. Cameron,et al.  Sudoku, Gerechte Designs, Resolutions, Affine Space, Spreads, Reguli, and Hamming Codes , 2008, Am. Math. Mon..

[31]  Peter Adams,et al.  Completing Partial Latin Squares with Two Filled Rows and Two Filled Columns , 2008, Electron. J. Comb..

[32]  Hossein Jowhari,et al.  On Completing Latin Squares , 2007, STACS.

[33]  Naoki Suehiro,et al.  On perfect arrays , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[34]  Gad M. Landau,et al.  Sequence complexity profiles of prokaryotic genomic sequences: A fast algorithm for calculating linguistic complexity , 2002, Bioinform..

[35]  Nikil D. Dutt,et al.  System and architecture-level power reduction of microprocessor-based communication and multi-media applications , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).

[36]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[37]  Alexander Russell,et al.  Approximating Latin Square Extensions , 1996, Algorithmica.

[38]  Bella Bose,et al.  On the Number of Arc-Disjoint Hamiltonian Circuits in the de Bruijn Graph , 1993, Parallel Process. Lett..

[39]  Venkat Subramaniam Introduction to Concurrency , 1992 .

[40]  A. D. Keedwell,et al.  Latin Squares: New Developments in the Theory and Applications , 1991 .

[41]  Antal Iványi,et al.  Construction of infinite de Bruijn arrays , 1989, Discret. Appl. Math..

[42]  G. Egorychev Integral representation and the computation of combinatorial sums , 1984 .

[43]  W. Worlton,et al.  The Art of Computer Programming , 1968 .

[44]  G. Szegö Über Einige von S. Eamanujan Gestellte Aufgaben , 1928 .

[45]  B. Bagchi,et al.  Latin squares , 2012 .

[46]  Antal Iványi,et al.  Perfect hypercubes , 2011, Electron. Notes Discret. Math..

[47]  A. Donald Keedwell,et al.  Constructions of complete sets of orthogonal diagonal Sudoku squares , 2010, Australas. J Comb..

[48]  J. F. Crook,et al.  A Pencil-and-Paper Algorithm for Solving Sudoku Puzzles , 2009 .

[49]  Lars-Daniel Öhman,et al.  A note on completing latin squares , 2009, Australas. J Comb..

[50]  Henri Casanova,et al.  Parallel Algorithms , 2008 .

[51]  A. Iványi,et al.  Two-dimensional arrays with maximal complexity , 2006 .

[52]  Skbastien FerenczP,et al.  Complexity for finite factors of infinite , 1999 .

[53]  Antal Iványi,et al.  On the d-complexity of words , 1987 .

[54]  Antal Iványi,et al.  Processing of random sequences with priority , 1978, Acta Cybern..

[55]  Edward G. Coffman,et al.  A Combinatorial Problem Related to Interleaved Memory Systems , 1973, JACM.

[56]  Herbert Hellerman,et al.  Digital Computer System Principles , 1967 .

[57]  Jun-Ming Xu,et al.  Computers and Mathematics with Applications ( ) – Computers and Mathematics with Applications Feedback Numbers of De Bruijn Digraphs , 2022 .