Componentwise Analysis of Direct Factorization of Real Symmetric and Hermitian Matrices

Abstract We derive componentwise error bound for the factorization H = GJG T , where H is a real symmetric matrix, G has full column rank, and J is diagonal with ±1's on the diagonal. We also derive a componentwise forward error bound, that is, we bound the difference between the exact and the computed factor G , in the cases where such a bound is possible. We extend these results to the Hermitian case, and to the well-known Bunch-Parlett factorization. Finally, we prove bounds for the scaled condition of the matrix G , and show that the factorization can have the rank-revealing property.

[1]  T. Chan Rank revealing QR factorizations , 1987 .

[2]  N. Higham Analysis of the Cholesky Decomposition of a Semi-definite Matrix , 1990 .

[3]  J. Bunch,et al.  Decomposition of a symmetric matrix , 1976 .

[4]  J. Barlow,et al.  Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .

[5]  J. H. Wilkinson,et al.  Reliable Numerical Computation. , 1992 .

[6]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[7]  A. Sluis Condition numbers and equilibration of matrices , 1969 .

[8]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[9]  David Goldberg,et al.  What every computer scientist should know about floating-point arithmetic , 1991, CSUR.

[10]  Ivan Slapničar,et al.  Floating-point perturbations of Hermitian matrices , 1993 .

[11]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[12]  M. SIAMJ. STABILITY OF THE DIAGONAL PIVOTING METHOD WITH PARTIAL PIVOTING , 1995 .

[13]  Michael A. Saunders,et al.  Inertia-Controlling Methods for General Quadratic Programming , 1991, SIAM Rev..

[14]  Ivan Slapničar,et al.  Perturbations of the eigenprojections of a factorized Hermitian matrix , 1995 .

[15]  LAPACK Working Note 14 On Floating Point Errors in CholeskyJames , .

[16]  Ivan Slapničar,et al.  Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .

[17]  R. Plemmons,et al.  LU decompositions of generalized diagonally dominant matrices , 1982 .

[18]  John G. Lewis,et al.  Accurate Symmetric Indefinite Linear Equation Solvers , 1999, SIAM J. Matrix Anal. Appl..

[19]  I. Duff,et al.  The factorization of sparse symmetric indefinite matrices , 1991 .

[20]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[21]  J. Demmel,et al.  On Floating Point Errors in Cholesky , 1989 .

[22]  I. Duff,et al.  On the augmented system approach to sparse least-squares problems , 1989 .

[23]  Ji-guang Sun,et al.  Rounding-error and perturbation bounds for the Cholesky and LDL T factorizations , 1991 .

[24]  J. Bunch Analysis of the Diagonal Pivoting Method , 1971 .

[25]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[26]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[27]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[28]  K. Veselié A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .

[29]  Michael A. Saunders,et al.  Preconditioners for Indefinite Systems Arising in Optimization , 1992, SIAM J. Matrix Anal. Appl..

[30]  James Demmel,et al.  Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..

[31]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .