Multiplex PCR Detection of Common Carbapenemase Genes and Identification of Clinically Relevant Escherichia coli and Klebsiella pneumoniae Complex

Carbapenem-resistant Enterobacterales (CRE) species are top priority pathogens according to the World Health Organization. Rapid detection is necessary and useful for their surveillance and control globally. This study developed a multiplex polymerase chain reaction (mPCR) detection of the common carbapenemase genes NDM, KPC, and OXA-48-like, together with identification of Escherichia coli, and distinguished a Klebsiella pneumoniae complex to be K. pneumoniae, K. quasipneumoniae, and K. variicola. Of 840 target Enterobacterales species, 190 E. coli, 598 K. pneumoniae, 28 K. quasipneumoniae, and 23 K. variicola. with and without NDM, KPC, or OXA-48-like were correctly detected for their species and carbapenemase genes. In contrast, for the Enterobacterales species other than E. coli or K. pneumoniae complex with carbapenemase genes, the mPCR assay could detect only NDM, KPC, or OXA-48-like. This PCR method should be useful in clinical microbiology laboratories requiring rapid detection of CRE for epidemiological investigation and for tracking the trends of carbapenemase gene dynamics.

[1]  M. Castanheira,et al.  Prevalence of carbapenemase genes among carbapenem-nonsusceptible Enterobacterales collected in US hospitals in a five-year period and activity of ceftazidime/avibactam and comparator agents , 2022, JAC-antimicrobial resistance.

[2]  B. Lekhak,et al.  Detection of NDM Variants (blaNDM-1, blaNDM-2, blaNDM-3) from Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae: First Report from Nepal , 2022, Infection and drug resistance.

[3]  D. Motooka,et al.  Nationwide surveillance in Thailand revealed genotype-dependent dissemination of carbapenem-resistant Enterobacterales , 2022, Microbial genomics.

[4]  Rujirat Hatrongjit,et al.  Klebsiella pneumoniae Complex Harboring mcr-1, mcr-7, and mcr-8 Isolates from Slaughtered Pigs in Thailand , 2021, Microorganisms.

[5]  A. Hoerauf,et al.  Global Distribution Patterns of Carbapenemase-Encoding Bacteria in a New Light: Clues on a Role for Ethnicity , 2021, Frontiers in Cellular and Infection Microbiology.

[6]  Amy Kolwaite,et al.  Molecular epidemiology of carbapenem-resistant Enterobacterales in Thailand, 2016–2018 , 2021, Antimicrobial Resistance & Infection Control.

[7]  H. Hagiya,et al.  Multiplex Real-Time PCR Assay for Six Major Carbapenemase Genes , 2021, Pathogens.

[8]  G. Hansen Continuous Evolution: Perspective on the Epidemiology of Carbapenemase Resistance Among Enterobacterales and Other Gram-Negative Bacteria , 2021, Infectious Diseases and Therapy.

[9]  P. Higgins,et al.  Novel multiplex PCRs for detection of the most prevalent carbapenemase genes in Gram-negative bacteria within Germany. , 2021, Journal of medical microbiology.

[10]  Raoudha Dziri,et al.  Carbapenemase Producing Gram-Negative Bacteria in Tunisia: History of Thirteen Years of Challenge , 2020, Infection and drug resistance.

[11]  K. Hopkins,et al.  Carbapenemase-producing Enterobacterales: a challenge for healthcare now and for the next decade. , 2020, Infection prevention in practice.

[12]  F. Hu,et al.  Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China , 2020, Frontiers in Cellular and Infection Microbiology.

[13]  M. Banjara,et al.  Detection of OXA-48 Gene in Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae from Urine Samples , 2020, Infection and drug resistance.

[14]  Gyu Ri Kim,et al.  Prevalence and characteristics of carbapenemase-producing Enterobacteriaceae in three tertiary-care Korean university hospitals between 2017 and 2018. , 2020, Japanese journal of infectious diseases.

[15]  F. Westerlund,et al.  Molecular Epidemiology of OXA-48 and NDM-1 Producing Enterobacterales Species at a University Hospital in Tehran, Iran, Between 2015 and 2016 , 2020, Frontiers in Microbiology.

[16]  S. Hamada,et al.  Genomic characterization of an emerging blaKPC-2 carrying Enterobacteriaceae clinical isolates in Thailand , 2019, Scientific Reports.

[17]  H. Shinomiya,et al.  Single-Tube Multiplex Polymerase Chain Reaction for the Detection of Genes Encoding Enterobacteriaceae Carbapenemase. , 2019, Japanese journal of infectious diseases.

[18]  S. Gatermann,et al.  Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. , 2019, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[19]  R. Sekar,et al.  NDM and other mechanisms of carbapenemases among Enterobacteriaceae in rural South India. , 2019, Journal of global antimicrobial resistance.

[20]  M. Pérez-Gracia,et al.  Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections , 2019, Antibiotics.

[21]  M. Bonten,et al.  Characterization of carbapenemase-producing Enterobacteriaceae from colonized patients in a university hospital in Madrid, Spain, during the R-GNOSIS project depicts increased clonal diversity over time with maintenance of high-risk clones , 2018, The Journal of antimicrobial chemotherapy.

[22]  S. Hamada,et al.  Detection of plasmid-mediated colistin-resistant and carbapenem-resistant genes by multiplex PCR , 2018, MethodsX.

[23]  P. Ahmad-Nejad,et al.  Comparison of in-house and commercial real time-PCR based carbapenemase gene detection methods in Enterobacteriaceae and non-fermenting gram-negative bacterial isolates , 2017, Annals of Clinical Microbiology and Antimicrobials.

[24]  D. van Duin,et al.  The global epidemiology of carbapenemase-producing Enterobacteriaceae , 2017, Virulence.

[25]  A. Vicente,et al.  A one-step multiplex PCR to identify Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae in the clinical routine. , 2017, Diagnostic microbiology and infectious disease.

[26]  Robert A. Weinstein,et al.  The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace , 2017, The Journal of infectious diseases.

[27]  M. Adams,et al.  Global Molecular Epidemiology of IMP-Producing Enterobacteriaceae , 2017, Antimicrobial Agents and Chemotherapy.

[28]  K. Carroll,et al.  Comparison of 11 Phenotypic Assays for Accurate Detection of Carbapenemase-Producing Enterobacteriaceae , 2017, Journal of Clinical Microbiology.

[29]  T. Leenstra,et al.  Detection and epidemiology of carbapenemase producing Enterobacteriaceae in the Netherlands in 2013–2014 , 2016, European Journal of Clinical Microbiology & Infectious Diseases.

[30]  S. Essack,et al.  Review of established and innovative detection methods for carbapenemase‐producing Gram‐negative bacteria , 2015, Journal of applied microbiology.

[31]  P. Nordmann,et al.  Multiplex PCR for detection of acquired carbapenemase genes. , 2011, Diagnostic microbiology and infectious disease.

[32]  S. Abbott Klebsiella, Enterobacter, Citrobacter, Serratia, Plesiomonas, and Other Enterobacteriaceae , 2011 .

[33]  Y. Nitzan,et al.  Identification of pathogenic bacteria in blood cultures: comparison between conventional and PCR methods. , 2009, Journal of microbiological methods.

[34]  P. Bradford,et al.  Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. , 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[35]  P. Nordmann,et al.  Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella pneumoniae , 2004, Antimicrobial Agents and Chemotherapy.

[36]  M. Ferraro Performance standards for antimicrobial susceptibility testing , 2001 .