A 28-nm 75-fsrms Analog Fractional- $N$ Sampling PLL With a Highly Linear DTC Incorporating Background DTC Gain Calibration and Reference Clock Duty Cycle Correction

An analog fractional-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> sampling phase-locked loop (PLL) is presented. It achieves 75-fs rms jitter, integrated from 10 kHz to 10 MHz, and a −249.7-dB figure of merit (FoM) at the fractional-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> mode with a 52-MHz reference clock. The measured fractional spur is less than −64 dBc across the 5.5–7.3-GHz output frequency band. The PLL employs digital-to-time converter (DTC)-based sampling PLL architecture, high linearity DTC design techniques, background DTC gain calibration, and reference clock duty cycle correction (DCC) to improve the integrated phase noise (IPN) and fractional spur. This design meets the performance requirement of the 5G cellular 64-quadratic-amplitude modulation (QAM) standard in the 28-/39-GHz band, supporting <inline-formula> <tex-math notation="LaTeX">$2 \times 2$ </tex-math></inline-formula> multi-in multi-out (MIMO). This paper, implemented in a 28-nm CMOS process, is integrated in a 5G millimeter-wave cellular transceiver. This PLL consumes 18.9 mW and occupies 0.45 mm<sup>2</sup>.

[1]  Jan Craninckx,et al.  A 10-bit, 550-fs step Digital-to-Time Converter in 28nm CMOS , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[2]  J.R. Long,et al.  A 56–65 GHz Injection-Locked Frequency Tripler With Quadrature Outputs in 90-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[3]  Eric A. M. Klumperink,et al.  Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Jaehyouk Choi,et al.  19.2 A PVT-robust −39dBc 1kHz-to-100MHz integrated-phase-noise 29GHz injection-locked frequency multiplier with a 600µW frequency-tracking loop using the averages of phase deviations for mm-band 5G transceivers , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[5]  Nenad Pavlovic,et al.  A 5.3GHz digital-to-time-converter-based fractional-N all-digital PLL , 2011, 2011 IEEE International Solid-State Circuits Conference.

[6]  Yue Chen,et al.  A 3.5–6.8-GHz Wide-Bandwidth DTC-Assisted Fractional-N All-Digital PLL With a MASH $\Delta \Sigma $ -TDC for Low In-Band Phase Noise , 2017, IEEE Journal of Solid-State Circuits.

[7]  T. Cho,et al.  A low spur fractional-N digital PLL for 802.11 a/b/g/n/ac with 0.19 psrms jitter , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[8]  Giovanni Marzin,et al.  A 2.9–4.0-GHz Fractional-N Digital PLL With Bang-Bang Phase Detector and 560-${\rm fs}_{\rm rms}$ Integrated Jitter at 4.5-mW Power , 2011, IEEE Journal of Solid-State Circuits.

[9]  Li Lin,et al.  9.4 A 28nm CMOS digital fractional-N PLL with −245.5dB FOM and a frequency tripler for 802.11abgn/ac radio , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[10]  Giovanni Marzin,et al.  An Adaptive Pre-Distortion Technique to Mitigate the DTC Nonlinearity in Digital PLLs , 2014, IEEE Journal of Solid-State Circuits.

[11]  Jan Craninckx,et al.  A 9.2–12.7 GHz Wideband Fractional-N Subsampling PLL in 28 nm CMOS With 280 fs RMS Jitter , 2015, IEEE Journal of Solid-State Circuits.

[12]  T. Kobayashi,et al.  A current-mode latch sense amplifier and a static power saving input buffer for low-power architecture , 1992, 1992 Symposium on VLSI Circuits Digest of Technical Papers.

[13]  Kenichi Okada,et al.  A 0.98mW fractional-N ADPLL using 10b isolated constant-slope DTC with FOM of −246dB for IoT applications in 65nm CMOS , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[14]  Babak Vakili-Amini,et al.  A 65nm dual-band 3-stream 802.11n MIMO WLAN SoC , 2011, 2011 IEEE International Solid-State Circuits Conference.

[15]  B. Nauta,et al.  A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by $N ^{2}$ , 2009, IEEE Journal of Solid-State Circuits.

[16]  Shinwoong Kim,et al.  A 14-nm 0.14-psrms Fractional-N Digital PLL With a 0.2-ps Resolution ADC-Assisted Coarse/Fine-Conversion Chopping TDC and TDC Nonlinearity Calibration , 2017, IEEE Journal of Solid-State Circuits.

[17]  Kathleen Philips,et al.  9.8 An 860μW 2.1-to-2.7GHz all-digital PLL-based frequency modulator with a DTC-assisted snapshot TDC for WPAN (Bluetooth Smart and ZigBee) applications , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[18]  Eric A. M. Klumperink,et al.  Multi-phase sub-sampling fractional-N PLL with soft loop switching for fast robust locking , 2017, 2017 IEEE Custom Integrated Circuits Conference (CICC).

[19]  Masum Hossain,et al.  A 28-GHz Quadrature Fractional-N Frequency Synthesizer for 5G Transceivers With Less Than 100-fs Jitter Based on Cascaded PLL Architecture , 2017, IEEE Transactions on Microwave Theory and Techniques.

[20]  Salvatore Levantino,et al.  A low-phase-noise digital bang-bang PLL with fast lock over a wide lock range , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[21]  Pei-Yuan Chiang,et al.  A 5.5-7.3 GHz Analog Fractional-N Sampling PLL in 28-nm CMOS with 75 fsrmsJitter and −249.7 dB FoM , 2018, 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[22]  Giovanni Marucci,et al.  21.1 A 1.7GHz MDLL-based fractional-N frequency synthesizer with 1.4ps RMS integrated jitter and 3mW power using a 1b TDC , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[23]  Jan Craninckx,et al.  A DTC-Based Subsampling PLL Capable of Self-Calibrated Fractional Synthesis and Two-Point Modulation , 2016, IEEE Journal of Solid-State Circuits.