Existence and regularity of solutions of d ! = f with Dirichlet boundary conditions

Given a bounded open set Ω ⊂ ℝ n and a (k + l)-form f satisfying some compatibility conditions, we solve the problem (in Holder spaces) $$ d\omega = f\;in\;\Omega, \quad \omega = 0\;on\;\partial \Omega $$ .

[1]  W. Wahl On necessary and sufficient conditions for the solvability of the equations rot μ=γ and div μ=ε with μ vanishing on the boundary , 1990 .

[2]  J. Moser,et al.  On a partial differential equation involving the Jacobian determinant , 1990 .

[3]  C. B. Morrey,et al.  A Variational Method in the Theory of Harmonic Integrals, I , 1956 .

[4]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[5]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[6]  Charles B. Morrey,et al.  A Variational Method in the Theory of Harmonic Integrals, II , 1956 .

[7]  V. A. Solonnikov,et al.  Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations , 1978 .

[8]  R. Griesinger The boundary value problem rotu=f, u vanishing at the boundary and the related decompositions ofLq and H01,q: Existence , 1990, ANNALI DELL UNIVERSITA DI FERRARA.

[9]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[10]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[11]  M. E. Bogovskii Solution of the first boundary value problem for the equation of continuity of an incompressible medium , 1979 .

[12]  R. Kress Potentialtheoretische Randwertprobleme bei Tensorfeldern beliebiger Dimension und beliebigen Ranges , 1972 .

[13]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[14]  C. B. Morrey A variational method in the theory of harmonic integrals , 1956 .

[15]  C. Godbillon,et al.  Éléments de topologie algébrique , 1971 .

[16]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[17]  G. Duff,et al.  HARMONIC TENSORS ON RIEMANNIAN MANIFOLDS WITH BOUNDARY , 1952 .

[18]  L. V. Kapitanskii,et al.  Certain problems of vector analysis , 1986 .

[19]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[20]  W. Borchers,et al.  On the equations rot v=g and div u=f with zero boundary conditions , 1990 .

[21]  Luc Tartar,et al.  Topics in nonlinear analysis , 1978 .

[22]  B. Dacorogna Direct methods in the calculus of variations , 1989 .