Inhibition by mibefradil, a novel calcium channel antagonist, of Ca2+‐ and volume‐activated Cl− channels in macrovascular endothelial cells

[1]  B. Nilius,et al.  Calcium‐activated chloride channels in bovine pulmonary artery endothelial cells. , 1997, The Journal of physiology.

[2]  B. Nilius,et al.  Ion channels in vascular endothelium. , 1997, Annual review of physiology.

[3]  B. Nilius,et al.  Membrane currents and the resting membrane potential in cultured bovine pulmonary artery endothelial cells. , 1996, The Journal of physiology.

[4]  B. Nilius,et al.  Volume-activated Cl- channels. , 1996, General pharmacology.

[5]  B. Nilius,et al.  Potent block of volume‐activated chloride currents in endothelial cells by the uncharged form of quinine and quinidine , 1996, British journal of pharmacology.

[6]  G. Billman,et al.  The effects of mibefradil, a novel calcium channel antagonist on ventricular arrhythmias induced by myocardial ischemia and programmed electrical stimulation. , 1996, The Journal of pharmacology and experimental therapeutics.

[7]  I. Kobrin,et al.  Antihypertensive properties of the novel calcium antagonist mibefradil (Ro 40-5967): a new generation of calcium antagonists? Mibefradil International Study Group. , 1996, Hypertension.

[8]  E. E. van der Wall,et al.  Effects of a new calcium antagonist, mibefradil (Ro 40-5967), on silent ischemia in patients with stable chronic angina pectoris: a multicenter placebo-controlled study. The Mibefradil International Study Group. , 1996, Journal of the American College of Cardiology.

[9]  B. Nilius,et al.  Characterization of Volume-activated Chloride Currents in Endothelial Cells from Bovine Pulmonary Artery , 1996, The Journal of Membrane Biology.

[10]  B. Nilius,et al.  Biology of the Vascular Wall and Its Interaction with Migratory and Blood Cells , 1996 .

[11]  K. Hermsmeyer,et al.  Protein kinase C mechanism enhances vascular muscle relaxation by the Ca2+ antagonist, Ro 40-5967. , 1996, Journal of vascular research.

[12]  S. Roux,et al.  Mechanism of the antiischemic effect of mibefradil, a selective T calcium channel blocker in dogs: comparison with amlodipine. , 1996, Journal of cardiovascular pharmacology.

[13]  N. Voelkel,et al.  [Leukocyte-mediated production of eicosanoids in rat lungs: modulation by a calcium antagonist]. , 1995, Nihon Kyobu Shikkan Gakkai zasshi.

[14]  E. E. van der Wall,et al.  Effects of the new calcium antagonist mibefradil (Ro 40-5967) on exercise duration in patients with chronic stable angina pectoris: a multicenter, placebo-controlled study. Ro 40-5967 International Study Group. , 1995, American heart journal.

[15]  K. Strange,et al.  Swelling-activated organic osmolyte efflux: a new role for anion channels. , 1995, Kidney international.

[16]  R. Tsien,et al.  Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967). , 1995, Molecular pharmacology.

[17]  F. Bühler,et al.  Mibefradil prevents neointima formation after vascular injury in rats. Possible role of the blockade of the T-type voltage-operated calcium channel. , 1995, Arteriosclerosis, thrombosis, and vascular biology.

[18]  T. Lüscher,et al.  Differential Effects of the Calcium Antagonist Mibefradil in Epicardial and Intramyocardial Coronary Arteries , 1995, Journal of cardiovascular pharmacology.

[19]  J. Ménard,et al.  Structural changes and cyclic GMP content of the aorta after calcium antagonism or angiotensin converting enzyme inhibition in renovascular hypertensive rats , 1995, Journal of hypertension.

[20]  R. Ochi,et al.  Depression of ATP-induced Ca2+ signalling by high K+ and low Cl- media in human aortic endothelial cells. , 1995, The Japanese journal of physiology.

[21]  B. Nilius,et al.  Calcium entry activated by store depletion in human umbilical vein endothelial cells. , 1994, Cell calcium.

[22]  W. Graier,et al.  Histamine induces K+, Ca2+, and Cl- currents in human vascular endothelial cells. Role of ionic currents in stimulation of nitric oxide biosynthesis. , 1994, Circulation research.

[23]  S. Mishra,et al.  Selective inhibition of T-type Ca2+ channels by Ro 40-5967. , 1994, Circulation research.

[24]  B. Nilius,et al.  Activation of a Cl- current by hypotonic volume increase in human endothelial cells , 1994, The Journal of general physiology.

[25]  B. Nilius,et al.  Mechanosensitive Ca2+ transients in endothelial cells from human umbilical vein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Iijima,et al.  Chloride-sensitive Ca2+ entry by histamine and ATP in human aortic endothelial cells. , 1994, European journal of pharmacology.

[27]  N. Standen,et al.  The Role of the Membrane Potential of Endothelial and Smooth Muscle Cells in the Regulation of Coronary Blood Flow , 1994, Journal of cardiovascular electrophysiology.

[28]  B. Nilius A role for potassium channels in cell proliferation , 1994 .

[29]  H. Baumgartner,et al.  Effects of calcium channel blockade on the aortic intima in spontaneously hypertensive rats. , 1993, Hypertension.

[30]  W. Osterrieder,et al.  Potential-dependent inhibition of cardiac Ca2+ inward currents by Ro 40-5967 and verapamil: relation to negative inotropy. , 1991, European journal of pharmacology.