Tracking topological changes in parametric models

In current parametric CAD systems, the relation between the values of the parameters of a model and the topology of the model is often not clear to the user. To give the user better control over the topology of the model, this relation should be made explicit. A method is presented here that determines the parameter values for which the topology of a model changes, i.e. the critical values of a given variant parameter. The considered model consists of a system of geometric constraints, which relates parameters and feature geometries, and a cellular model, which partitions space into volumetric cells determined by the intersections of the feature geometries and represented by topological entities. Our method creates a new system of geometric constraints to relate the parameters of the model to the topological entities. For each entity that is dependent on the variant parameter, degenerate cases are enforced by specific geometric constraints. Solving the resulting constraint systems yields the critical parameter values. Critical values can be used to compute parameter ranges corresponding to families of objects, i.e. all parameter values which correspond to models that satisfy a given set of geometric and topological constraints.

[1]  Willem F. Bronsvoort,et al.  Specification of freeform features , 2003, SM '03.

[2]  Willem F. Bronsvoort,et al.  Semantic feature modelling , 2000, Comput. Aided Des..

[3]  Willem F. Bronsvoort,et al.  A non-rigid cluster rewriting approach to solve systems of 3D geometric constraints , 2010, Comput. Aided Des..

[4]  Willem F. Bronsvoort,et al.  A constructive approach to calculate parameter ranges for systems of geometric constraints , 2006, Comput. Aided Des..

[5]  M HoffmanChristoph,et al.  Decomposition Plans for Geometric Constraint Systems, Part I , 2001 .

[6]  Willem F. Bronsvoort,et al.  Tracking topological changes in feature models , 2007, Symposium on Solid and Physical Modeling.

[7]  Willem F. Bronsvoort,et al.  Solving topological constraints for declarative families of objects , 2006, SPM '06.

[8]  Willem F. Bronsvoort,et al.  Efficiency of boundary evaluation for a cellular model , 2005, Comput. Aided Des..

[9]  Vadim Shapiro,et al.  Boundary representation deformation in parametric solid modeling , 1998, TOGS.

[10]  Christoph M. Hoffmann,et al.  Towards valid parametric CAD models , 2001, Comput. Aided Des..

[11]  Guy Pierra,et al.  A survey of the persistent naming problem , 2002, SMA '02.

[12]  Xiao-Shan Gao,et al.  A C-tree decomposition algorithm for 2D and 3D geometric constraint solving , 2006, Comput. Aided Des..

[13]  Willem F. Bronsvoort,et al.  Representation and management of feature information in a cellular model , 1998, Comput. Aided Des..

[14]  Willem F. Bronsvoort,et al.  A Feature-Based Solution to the Persistent Naming Problem , 2005 .

[15]  Glenn A. Kramer Solving geometric constraint systems a case study in kinematics , 1992, Comput. Aided Des..

[16]  Ari Rappoport The generic geometric complex (GGC): a modeling scheme for families of decomposed pointsets , 1997, SMA '97.

[17]  Srinivas Raghothama Constructive topological representations , 2006, SPM '06.

[18]  Christoph M. Hoffmann,et al.  Decomposition Plans for Geometric Constraint Problems, Part II: New Algorithms , 2001, J. Symb. Comput..

[19]  Vadim Shapiro,et al.  Topological framework for part families , 2002, SMA '02.

[20]  Vadim Shapiro,et al.  What is a parametric family of solids? , 1995, Symposium on Solid Modeling and Applications.