Genome evolution of Buchnera aphidicola (Gammaproteobacteria): Insights into strand compositional asymmetry, codon usage bias, and phylogenetic implications.

[1]  V. Barbe,et al.  Co-obligate symbioses have repeatedly evolved across aphids, but partner identity and nutritional contributions vary across lineages , 2023, bioRxiv.

[2]  X. Kan,et al.  Mitogenomic Codon Usage Patterns of Superfamily Certhioidea (Aves, Passeriformes): Insights into Asymmetrical Bias and Phylogenetic Implications , 2022, Animals : an open access journal from MDPI.

[3]  F. Gao,et al.  DoriC 12.0: an updated database of replication origins in both complete and draft prokaryotic genomes , 2022, Nucleic Acids Res..

[4]  Li-li Jiang,et al.  Deep decoding of codon usage strategies and host adaption preferences of soybean mosaic virus. , 2022, International journal of biological macromolecules.

[5]  F. Gao,et al.  Ori-Finder 2022: A Comprehensive Web Server for Prediction and Analysis of Bacterial Replication Origins , 2022, bioRxiv.

[6]  S. Shigenobu,et al.  Complex host/symbiont integration of a multi-partner symbiotic system in the eusocial aphid Ceratovacuna japonica , 2022, bioRxiv.

[7]  Longhua Wu,et al.  Plastome evolution of Aeonium and Monanthes (Crassulaceae): insights into the variation of plastomic tRNAs, and the patterns of codon usage and aversion , 2022, Planta.

[8]  Pei Xue,et al.  Codon usage divergence of important functional genes in Mycobacterium tuberculosis. , 2022, International journal of biological macromolecules.

[9]  Christopher L. Owen,et al.  Phylogenomics of the Aphididae: Deep relationships between subfamilies clouded by gene tree discordance, introgression and the gene tree anomaly zone , 2022, Systematic Entomology.

[10]  S. Chakraborty,et al.  Influencing elements of codon usage bias in Birnaviridae and its evolutionary analysis. , 2022, Virus research.

[11]  V. Bhadana,et al.  Codon usage bias , 2021, Molecular Biology Reports.

[12]  Donovan H. Parks,et al.  GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy , 2021, Nucleic Acids Res..

[13]  H. Musto,et al.  Codon Usage Bias: An Endless Tale , 2021, Journal of Molecular Evolution.

[14]  X. Kan,et al.  Codon usage patterns and evolution of HSP60 in birds. , 2021, International journal of biological macromolecules.

[15]  Liyun Jiang,et al.  Phylogeny of drepanosiphine aphids sensu lato (Hemiptera, Aphidoidea) inferred from molecular and morphological data , 2021, Current zoology.

[16]  Quanming Xu,et al.  Genome-wide analysis of the synonymous codon usage pattern of Streptococcus suis. , 2021, Microbial pathogenesis.

[17]  Sisi Liu,et al.  Analysis of synonymous codon usage of transcriptome database in Rheum palmatum , 2021, PeerJ.

[18]  S. Chakraborty,et al.  Composition, codon usage pattern, protein properties, and influencing factors in the genomes of members of the family Anelloviridae , 2021, Archives of virology.

[19]  N. Lo,et al.  Evolutionary Rates are Correlated Between Buchnera Endosymbionts and the Mitochondrial Genomes of Their Aphid Hosts , 2020, Journal of Molecular Evolution.

[20]  Z. Ning,et al.  Comprehensive analysis of synonymous codon usage patterns and influencing factors of porcine epidemic diarrhea virus , 2020, Archives of virology.

[21]  Fan Song,et al.  The complete mitochondrial genome of the mealy plum aphid, Hyalopterus pruni (Hemiptera: Aphididae) , 2020, Mitochondrial DNA. Part B, Resources.

[22]  D. Gordenin,et al.  Hypermutation in single-stranded DNA , 2020, DNA Repair.

[23]  E. Kiers,et al.  Parallel Evolution in the Integration of a Co-obligate Aphid Symbiosis , 2020, Current Biology.

[24]  C. Pandey,et al.  Application of Student's t-test, Analysis of Variance, and Covariance , 2019, Annals of cardiac anaesthesia.

[25]  Lawrence S. Hon,et al.  Description of soybean aphid (Aphis glycines Matsumura) mitochondrial genome and comparative mitogenomics of Aphididae (Hemiptera: Sternorrhyncha). , 2019, Insect biochemistry and molecular biology.

[26]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[27]  N. Moran,et al.  Genome Evolution of the Obligate Endosymbiont Buchnera aphidicola. , 2019, Molecular biology and evolution.

[28]  Alexey M. Kozlov,et al.  ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models , 2019, bioRxiv.

[29]  Jin Zhang,et al.  PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies , 2018, bioRxiv.

[30]  Alexey M. Kozlov,et al.  RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference , 2018, bioRxiv.

[31]  Christa Boer,et al.  Correlation Coefficients: Appropriate Use and Interpretation , 2018, Anesthesia and analgesia.

[32]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[33]  Dave Clarke,et al.  Molecular phylogeny of Macrosiphini (Hemiptera: Aphididae): An evolutionary hypothesis for the Pterocomma-group habitat adaptation. , 2018, Molecular phylogenetics and evolution.

[34]  Kazunori D. Yamada,et al.  Parallelization of MAFFT for large-scale multiple sequence alignments , 2018, Bioinform..

[35]  Yang Zhang,et al.  Genetic Structure of the Bacterial Endosymbiont Buchnera aphidicola from Its Host Aphid Schlechtendalia chinensis and Evolutionary Implications , 2018, Current Microbiology.

[36]  A. von Haeseler,et al.  MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation , 2018, BMC Evolutionary Biology.

[37]  N. Moran,et al.  Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids , 2018, The ISME Journal.

[38]  Yasukazu Nakamura,et al.  DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication , 2017, Bioinform..

[39]  R. Asokan,et al.  Reconstructing the macroevolutionary patterns of aphids (Hemiptera: Aphididae) using nuclear and mitochondrial DNA sequences , 2017 .

[40]  Y. Wang,et al.  Mitochondrial genome sequences effectively reveal deep branching events in aphids (Insecta: Hemiptera: Aphididae) , 2017 .

[41]  X. Peng,et al.  Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps , 2017, BMC Genomics.

[42]  Peter D. Karp,et al.  The EcoCyc database: reflecting new knowledge about Escherichia coli K-12 , 2016, Nucleic Acids Res..

[43]  H. Zhang,et al.  All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids , 2016, PloS one.

[44]  F. Guo,et al.  Multiple Factors Drive Replicating Strand Composition Bias in Bacterial Genomes , 2015, International journal of molecular sciences.

[45]  Zeyang Zhou,et al.  Comparative Analysis of Codon Usage Bias Patterns in Microsporidian Genomes , 2015, PloS one.

[46]  N. Moran,et al.  The tiniest tiny genomes. , 2014, Annual review of microbiology.

[47]  N. Moran,et al.  Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. , 2013, Molecular phylogenetics and evolution.

[48]  R. Bambara,et al.  Okazaki fragment metabolism. , 2013, Cold Spring Harbor perspectives in biology.

[49]  C. Dutta,et al.  Microbial Lifestyle and Genome Signatures , 2012, Current genomics.

[50]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[51]  Y. Jang,et al.  Macroevolutionary Patterns in the Aphidini Aphids (Hemiptera: Aphididae): Diversification, Host Association, and Biogeographic Origins , 2011, PloS one.

[52]  A. Moya,et al.  New Clues about the Evolutionary History of Metabolic Losses in Bacterial Endosymbionts, Provided by the Genome of Buchnera aphidicola from the Aphid Cinara tujafilina , 2011, Applied and Environmental Microbiology.

[53]  F. Guo,et al.  Strong Strand Composition Bias in the Genome of Ehrlichia canis Revealed by Multiple Methods , 2010, The open microbiology journal.

[54]  S. K. Ray,et al.  Strand‐specific mutational bias influences codon usage of weakly expressed genes in Escherichia coli , 2010, Genes to cells : devoted to molecular & cellular mechanisms.

[55]  B. Ortiz-Rivas,et al.  Combination of molecular data support the existence of three main lineages in the phylogeny of aphids (Hemiptera: Aphididae) and the basal position of the subfamily Lachninae. , 2010, Molecular phylogenetics and evolution.

[56]  Igor Goryanin,et al.  A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola , 2009, BMC Systems Biology.

[57]  F. Guo,et al.  Codon Usages of Genes on Chromosome, and Surprisingly, Genes in Plasmid are Primarily Affected by Strand-specific Mutational Biases in Lawsonia intracellularis , 2009, DNA research : an international journal for rapid publication of reports on genes and genomes.

[58]  E. Jousselin,et al.  Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids , 2009, Proceedings of the Royal Society B: Biological Sciences.

[59]  N. Moran,et al.  Genomics and evolution of heritable bacterial symbionts. , 2008, Annual review of genetics.

[60]  Eduardo P C Rocha,et al.  From GC skews to wavelets: a gentle guide to the analysis of compositional asymmetries in genomic data. , 2008, Biochimie.

[61]  Gerard Talavera,et al.  Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. , 2007, Systematic biology.

[62]  M. Cox Regulation of Bacterial RecA Protein Function , 2007, Critical reviews in biochemistry and molecular biology.

[63]  Andrés Moya,et al.  A Small Microbial Genome: The End of a Long Symbiotic Relationship? , 2006, Science.

[64]  Qingpo Liu Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans. , 2006, Bio Systems.

[65]  S. Andersson,et al.  Strong asymmetric mutation bias in endosymbiont genomes coincide with loss of genes for replication restart pathways. , 2006, Molecular biology and evolution.

[66]  C. Dutta,et al.  Evolutionary Constraints on Codon and Amino Acid Usage in Two Strains of Human Pathogenic Actinobacteria Tropheryma whipplei , 2006, Journal of Molecular Evolution.

[67]  A. Douglas Phloem-sap feeding by animals: problems and solutions. , 2006, Journal of experimental botany.

[68]  T. Ghosh,et al.  Evolutionary Forces in Shaping the Codon and Amino Acid Usages in Blochmannia floridanus , 2004, Journal of Biomolecular Structure and Dynamics.

[69]  Eduardo P C Rocha,et al.  The replication-related organization of bacterial genomes. , 2004, Microbiology.

[70]  T. Fukatsu,et al.  Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[71]  A. Moya,et al.  Mutational and selective pressures on codon and amino acid usage in Buchnera, endosymbiotic bacteria of aphids. , 2003, Genome research.

[72]  N. Sueoka,et al.  Asymmetric directional mutation pressures in bacteria , 2002, Genome Biology.

[73]  Andrés Moya,et al.  Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  A. Moya,et al.  Molecular systematics of aphids and their primary endosymbionts. , 2001, Molecular phylogenetics and evolution.

[75]  H. Ochman,et al.  Deamination as the basis of strand-asymmetric evolution in transcribed Escherichia coli sequences. , 2001, Molecular biology and evolution.

[76]  N. Moran,et al.  Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation , 2000 .

[77]  H. Romero,et al.  Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. , 2000, Nucleic acids research.

[78]  J. Lobry,et al.  Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. , 1999, Gene.

[79]  N. Sueoka Two Aspects of DNA Base Composition: G+C Content and Translation-Coupled Deviation from Intra-Strand Rule of A=T and G=C , 1999, Journal of Molecular Evolution.

[80]  P. Sharp,et al.  Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. , 1999, Nucleic acids research.

[81]  N. Moran,et al.  How nutritionally imbalanced is phloem sap for aphids? , 1999 .

[82]  J O McInerney,et al.  Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[83]  A. Moya,et al.  Putative evolutionary origin of plasmids carrying the genes involved in leucine biosynthesis in Buchnera aphidicola (endosymbiont of aphids) , 1997, Journal of bacteriology.

[84]  H. Ochman,et al.  Strand asymmetries in DNA evolution. , 1997, Trends in genetics : TIG.

[85]  T. Fukatsu,et al.  Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. , 1996, Insect biochemistry and molecular biology.

[86]  N. Moran,et al.  A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[87]  F. Wright The 'effective number of codons' used in a gene. , 1990, Gene.

[88]  N. Sueoka Directional mutation pressure and neutral molecular evolution. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[89]  T. Okazaki,et al.  Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[90]  G. Qiao,et al.  Is the subfamily Eriosomatinae (Hemiptera: Aphididae) monophyletic? , 2014 .

[91]  A. Alzohairy BioEdit: An important software for molecular biology , 2011 .

[92]  C. Dutta,et al.  Codon and amino acid usage in two major human pathogens of genus Bartonella--optimization between replicational-transcriptional selection, translational control and cost minimization. , 2005, DNA research : an international journal for rapid publication of reports on genes and genomes.

[93]  A. Moya,et al.  Molecular systematics of aphids (Homoptera: Aphididae): new insights from the long-wavelength opsin gene. , 2004, Molecular phylogenetics and evolution.

[94]  Pierre Legendre,et al.  Statistical comparison of univariate tests of homogeneity of variances , 2001 .

[95]  A. Douglas,et al.  Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. , 1998, Annual review of entomology.

[96]  N. Moran,et al.  Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. , 1995, Annual review of microbiology.

[97]  A. K. Minks,et al.  Paleontology and phylogeny , 1987 .